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A Design of a 8-Thread Graphics Processor Unit
with Variable-Length Instructions

Kwang-Yeob Lee, Second Jae-Chang Kwak, Seokyeong University

Abstract— Most of multimedia processors for 2D/3D
graphics acceleration use a lot of integer/floating point
arithmetic units. We present a new architecture with an
efficient ALU, built in a smaller chip size. It reduces
instruction cycles significantly based on a foundation of
multi-thread operation, variable length instruction words,
dual phase operation, and phase instruction’s coordination.
We can decrease the number of instruction cycles up to
50%, and can achieve twice better performance.

Index Terms— 3D Graphics Accelerator, OpenGL ES
2.0, Shader, Multi-thread, Variable Length Instruction.

1. INTRODUCTION

For high performance of the multimedia software or the
other API’s work, we need a processor on the most
popular architectures of SIMD!" and VLIW®(Very Long
Instruction Words) domain. These processors have many
integer/floating point ALUs and special functions
(reciprocal, reciprocal square root...). They use many
micro-operation bit-fields on instruction to process them
concurrently. But too long instruction may cause a waste
of instruction memory size.

We are applying new architectures on a next generation
processor. One of them is a multi-thread operation. It
doesn’t need to handle with branch, data, and control
hazard. Because the term between an instruction and the
next instruction is long enough to ignore stalls caused
with instruction dependence.

In VLIW architecture, unnecessary memory is occupied
to store instructions, because of long length instruction
format. In order to solve this memory waste problem, a
variable length instruction format is proposed.
Instructions should be able to cooperate each other to
support a variable length instruction format. A dual phase
operation leads to efficient use of ALUs and to shorter
instruction cycles with phase cooperation.

New architectures are implemented based on shader
model 3.0 for 3D acceleration. The shader*®) model 3.0 is
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a part of Micro-soft’s DirectX 9.0 API¥L It can
accelerate the OpenVG API for 2D vector graphics. The
new architectures can be applicable to 2D or 3D graphics.

I1. The Proposed Architecture

2.1 Multi-thread processing
Multi-thread is a technique to improve the processor’s
performance with minimum resources.
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Fig. 1 Multi-thread Processing

Fig. 1 shows the simple round-robin multi-thread
execution. A processor can get rid of the dependency
between instructions in this way, so it eliminates data or
branch hazard. A handling moduie for the hazard stall
cases is removed, but thread status registers are required
for additional thread counts. If the processor has enough
threads, processor pipelines can be extended to improve
operation speed without data/branch hazards, because
multi-thread can loose the instruction’s dependency that
can be ignored.

2.2 VL-IW(Variable Length Instruction Words)
Architecture

VLIW have a micro-operation implementation structure,
which consists of micro-operations with long instruction
length to control the arithmetic/control unit on SIMD.
VLIW’s instruction includes many micro-operations, and
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it has a fixed long length. Although just a few micro-
operations are needed, full instruction length must be
used. It wastes too many instruction fields. So instruction
format must be reconfigured based on the execution
frequency of micro-operations.
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Fig. 2 SIMD(Single Instruction Multiful Data)
architecture

Figure 2 shows SIMD architecture that represents
recent API shader model 3.0. For the architecture, many
registers and instruction bit-ficlds are needed to indicate
register groups clearly. In our previous research, we
designed the instruction field for this architecture.
Minimum 64 bit instruction fields were needed for
shader model 1.0, and 102 bit instruction fields were
needed for shader model 3.0. But most instruction fields
are used very rarely. It is too wasteful to apply on the
media processor.

To resolve the waste problem of instruction fields,
we divide the instruction format to maximum 4 small
structured 32 bit instruction fragments. Each instruction
fragment has one micro-operation field, one destination
and one source operand field We can construct
thousands of instruction fragment combinations by
defining multiplex micro-operations and sources.

This variable length instruction format can simplify
the instruction unit, can improve performance by shorter
implementation of complex operations, and can save
memory space for long programs

2.3 Dual Phase Architecture

Another problem of SIMD architecture is the waste of
various register groups. For example, in Shader 3.0 API
of DirectX 9.0, roles of each proposed register group

seems to be not overlapped each other as shown in Fig. 3.
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Fig. 3 Registers set requirement of shader model 3.0

But in the point of view of a hardware design, this fact
can be considered that various input/output ports are
required to many registers. It shows that the hardware
design based on the requirements of API as shown in Fig.
3 is inefficient. This problem can be solved simply by
designing only one register group.
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Fig. 4 Simple SIMD architecture

As shown in Figd4, the design of only one
GPRs(General Purpose Registers) can simplify the
complexity of registers of a processor. The processor
with this design can be simpler than the process
supporting all registers of APL There are some
limitations in using only one GPRs. In DirectX Shader
API, even though every registers are used at the same
time, parts of register groups are combined to process a
complex expression. For the processor with one GPRs,
the complex expression must be divided into many
instructions in a macro form, and this can degrade the
performance. This degradation is a trade-off for the
simplification of the processor.
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Fig. 5 Cooperated SIMD architecture

Two cooperated processors architecture can be
suggested to improve the utilization of registers under
the simplification of the processor, as shown in Fig. 5.
For the performance improvement, the coordination is
connected from GPRs to Operand Fetch among two
processors.
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With this, it will enlarge registers’ scalability and more
complex registers operations can be performed even
though processor has just one GPRs. Since this
suggestion requires twice hardware, now the next step is
necessary to integrate {two processors into one processor.
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Fig. 6 Dual Phase SIMD architecture

Fig. 6 shows Dual Phase SIMD architecture by
removing unnecessary modules and integrating of
overlapping modules. This is a new one processor
architecture with one GPRs and shared ALU module,
whose functionality is identical to two processor
architecture shown in Fig. 5.
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Fig. 7 Phase bit - Dual phase architecture

Fig. 7 represents dual phase instructions for the Dual
Phase SIMD architecture. Thousands of instruction
combinations are possible implemented by VL-IW
structure. These instruction can be executed in maximum
two phases, and each phase can contain maximum two
instruction fragments. For this representation, additional
two bits are located at the upper MSB, as a phase bit and
an end bit.
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Fig. 8 shows a comprehensive architecture of all
presented architectures up to now. It is organized into
two phases. It shares the GPRs and ALUs, It can process
maximum 2 instruction fragments per a phase. Each
phase can designate maximum 2 sources and 1
destination. The phase #1 instruction can coordinate by
phase #0 instruction,

The phase #1 instruction can combine instructions for
compare, branch, compute, or memory access without
any extra exclusive hardware. The phase #1 instruction
can execute more complex instructions by receiving the
expression from phase #0.

2.4 Combination of instruction fragments

The limitations of this instruction structure will be
explained, before showing examples how these complex
instructions can be represented. Instructions can be
combined with maximum 4 instruction fragments and
can perform thousands of operations. Since each phase is
shared to maximize the efficiency of ALU, so there are
exclusive paring rules as shown in Fig. 9.
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Fig. 9 Exclusive pairing rules

For example, the use of same arithmetic units on the
same component at each phase is prohibited. The other
cases of branch or memory instruction fragments can be
performed only on phase #1.
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Fig. 10 Arithmetic operation with dual phase VL-IW



288 Kwang-Yeob Lee, Second Jae-Chang Kwak : A Design of a 8-Thread Graphics Processor Unit with Variable-Length Instructions

Fig. 10 shows some examples how the proposed
architecture uses ALUs efficiently. Example 1&2 present
that it makes shorter implementations of general
arithmetic operation with small instruction fragments.
Example 3&4 present complex arithmetic operations
coordinated by phase #0 instruction. Example 5 presents
various arithmetic instruction fragments can be combined
into one instruction. This combined instruction can be
executed faster.
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Fig. 11 Branch and looping operation with dual phase
VL-IW

Fig. 11 shows a part of representations of arithmetic
expressions. As shown in Example 1, the branch instruction
exists, but there is no compare branch mstruction, such as je
or jne, in the x86 system. These instructions can be
represented by ‘predicate’ instruction of phase #0, as shown
in Example 3. Call/return instruction can be represented by
branch instruction and ‘swizzle’ instruction of phase #0. Also
other instructions, such as indirect branch, nested branch,
comparison branch, and looping functions, can be represented
in the similar way. This architecture doesn’t have an extra
instruction penalty.

1. Conclusion

We present a new architecture for using efficient

ALUs with dual phase variable length instruction method.

With the multi-thread dual phase architecture, we can
decrease the instruction implementation cycles length up
to 50%, and the performance is minimum 200% better
than a generic SIMD architecture as shown in Fig. 2.
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Fig. 12 Architectures’ performance comparison

Fig. 2 shows the performance comparison of generic
SIMD, multi-thread, and multi-thread with dual phase
architecture, using some functions and branch operations
on the 2D and 3D graphics accelerated processor.

This multi-thread with dual phase operation and
variable length instruction words architecture can
provide an efficient performance improvement of ALU.
It also can be applicable to the multimedia acceleration.
This architecture has an optimal processor architecture
with the minimal resources.
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