International Journal of KIMICS, Vol. 6, No. 3, September 2008

285

A Design of a 8-Thread Graphics Processor Unit
with Variable-Length Instructions

Kwang-Yeob Lee, Second Jae-Chang Kwak, Seokyeong University

Abstract— Most of multimedia processors for 2D/3D
graphics acceleration use a lot of integer/floating point
arithmetic units. We present a new architecture with an
efficient ALU, built in a smaller chip size. It reduces
instruction cycles significantly based on a foundation of
multi-thread operation, variable length instruction words,
dual phase operation, and phase instruction’s coordination.
We can decrease the number of instruction cycles up to
50%, and can achieve twice better performance.

Index Terms— 3D Graphics Accelerator, OpenGL ES
2.0, Shader, Multi-thread, Variable Length Instruction.

1. INTRODUCTION

For high performance of the multimedia software or the
other API’s work, we need a processor on the most
popular architectures of SIMD!" and VLIW®(Very Long
Instruction Words) domain. These processors have many
integer/floating point ALUs and special functions
(reciprocal, reciprocal square root...). They use many
micro-operation bit-fields on instruction to process them
concurrently. But too long instruction may cause a waste
of instruction memory size.

We are applying new architectures on a next generation
processor. One of them is a multi-thread operation. It
doesn’t need to handle with branch, data, and control
hazard. Because the term between an instruction and the
next instruction is long enough to ignore stalls caused
with instruction dependence.

In VLIW architecture, unnecessary memory is occupied
to store instructions, because of long length instruction
format. In order to solve this memory waste problem, a
variable length instruction format is proposed.
Instructions should be able to cooperate each other to
support a variable length instruction format. A dual phase
operation leads to efficient use of ALUs and to shorter
instruction cycles with phase cooperation.

New architectures are implemented based on shader
model 3.0 for 3D acceleration. The shader*®) model 3.0 is

Manuscript received March 18, 2008; revised
August 18, 2008. Kwang-Yeob Lee', Jae-Chang
Kwak?, ! Dept. of Computer Engineering, Seokyeong
University, “Dept. of Computer Science, Seokyeong
University, Corresponding Author Seo-kyeong Univ.
Jeongneung 4-dong, Seongbuk-gu, Seoul, Korea

a part of Micro-soft’s DirectX 9.0 API¥L It can
accelerate the OpenVG API for 2D vector graphics. The
new architectures can be applicable to 2D or 3D graphics.

I1. The Proposed Architecture

2.1 Multi-thread processing
Multi-thread is a technique to improve the processor’s
performance with minimum resources.

1 Thread Processor

Time{clock) "
r—rr-

Thread Lane

4 Threads Processor

Time(clock) u
[#0-0 | #0-2 ﬁ #0-4 T 708] ereeeene

Thread Lane

» Solution of data & flow hazard

8 Threads Processor
Time{clock) .

2 T Fios] T I 703 | R
gl L #10 I I i) 1
8 T #11 | | 13 | EXZREEREY
3 [#2-0 [+%) | EXXEXEEEX]
| #2-1 | I #2-3]
[F50 [I F5D [
I #a-1 I T #3-3 | EXEERTEEN
[#A-0 T T #a7 [
T 2] I I #a3]
{ 50 T I 7. | EXXEIEXEE]
I #5-1 | | #5-3 |
[[N I I #o-2 "
I 3]]] w3]
{ F7-0 L% T e

 Solution of data & flow hazard
» Increase performance of the processor

Fig. 1 Multi-thread Processing

Fig. 1 shows the simple round-robin multi-thread
execution. A processor can get rid of the dependency
between instructions in this way, so it eliminates data or
branch hazard. A handling moduie for the hazard stall
cases is removed, but thread status registers are required
for additional thread counts. If the processor has enough
threads, processor pipelines can be extended to improve
operation speed without data/branch hazards, because
multi-thread can loose the instruction’s dependency that
can be ignored.

2.2 VL-IW(Variable Length Instruction Words)
Architecture

VLIW have a micro-operation implementation structure,
which consists of micro-operations with long instruction
length to control the arithmetic/control unit on SIMD.
VLIW’s instruction includes many micro-operations, and

286 Kwang-Yeob Lee, Second Jae-Chang Kwak : A Design of a 8-Thread Graphics Processor Unit with Variable-Length Instructions

it has a fixed long length. Although just a few micro-
operations are needed, full instruction length must be
used. It wastes too many instruction fields. So instruction
format must be reconfigured based on the execution
frequency of micro-operations.

| Instruction H Instruction Fetch I

Ry ¥
E Funclion Loop Counter Pmdate Addrcss Input Cﬂnﬁ Tamp

[e Cmn, courtar | Prese l Ik H OpevandFetch]
¥ 3

Swnzzle ! quo—Operahon Genera(or |

ALU/Branch

» Compiex SIMD Architecture
« Complex vanable regsiters groups
* Require dynamic branch instruction

Write Back

Fig. 2 SIMD(Single Instruction Multiful Data)
architecture

Figure 2 shows SIMD architecture that represents
recent API shader model 3.0. For the architecture, many
registers and instruction bit-ficlds are needed to indicate
register groups clearly. In our previous research, we
designed the instruction field for this architecture.
Minimum 64 bit instruction fields were needed for
shader model 1.0, and 102 bit instruction fields were
needed for shader model 3.0. But most instruction fields
are used very rarely. It is too wasteful to apply on the
media processor.

To resolve the waste problem of instruction fields,
we divide the instruction format to maximum 4 small
structured 32 bit instruction fragments. Each instruction
fragment has one micro-operation field, one destination
and one source operand field We can construct
thousands of instruction fragment combinations by
defining multiplex micro-operations and sources.

This variable length instruction format can simplify
the instruction unit, can improve performance by shorter
implementation of complex operations, and can save
memory space for long programs

2.3 Dual Phase Architecture

Another problem of SIMD architecture is the waste of
various register groups. For example, in Shader 3.0 API
of DirectX 9.0, roles of each proposed register group

seems to be not overlapped each other as shown in Fig. 3.

e API's Registers Complexity o H/W Registers Grouping

F

rod.cate
egster

nput haess
Regsiers or
,(
r Sampler
"'f J 4 / 2.
%%
nmpmyy FP Constant Shader
<, ﬂ—sa.m () [
High
 Comptoxay
Yory,
ﬂ \p‘eﬁ La : & ew“
Censtart ‘Y
Req /& \%& R-gsm

Shader AP Madel 3 ¢

»

erface

o Registers Simplicity (Not APl based)

<: > GPRs
l
Interface Complex Interface (Gonarst Porpns Rosiors)

Comploxty
Decensatization Halt int
des:

Inner/Outer
Memory

General
Core

New architocture.

Fig. 3 Registers set requirement of shader model 3.0

But in the point of view of a hardware design, this fact
can be considered that various input/output ports are
required to many registers. It shows that the hardware
design based on the requirements of API as shown in Fig.
3 is inefficient. This problem can be solved simply by
designing only one register group.

l Instruction H Instruction Fetch |

Memory

Write Back

\.

e Simple SIMD Architecture
¢ Require variable regsiters groups
e Require dynamic branch

Fig. 4 Simple SIMD architecture

As shown in Figd4, the design of only one
GPRs(General Purpose Registers) can simplify the
complexity of registers of a processor. The processor
with this design can be simpler than the process
supporting all registers of APL There are some
limitations in using only one GPRs. In DirectX Shader
API, even though every registers are used at the same
time, parts of register groups are combined to process a
complex expression. For the processor with one GPRs,
the complex expression must be divided into many
instructions in a macro form, and this can degrade the
performance. This degradation is a trade-off for the
simplification of the processor.

| Instruction |0—| Instruction Fetch]

l Instruction Hl\strucﬁon Fetchl
\

l l l } Coordinate ll l
| GPRs H Operand Fetch I I GPRs H Operand Fetch I
[N i L

Swizzle

Swizzle

r
Write Back Memory

* MIMD Separated two cores operation — cooperated instruction
Solve variable registers group with reusing GPRs

® Solve variable dynamic branch

® Require x2 H/W resource

Fig. 5 Cooperated SIMD architecture

Two cooperated processors architecture can be
suggested to improve the utilization of registers under
the simplification of the processor, as shown in Fig. 5.
For the performance improvement, the coordination is
connected from GPRs to Operand Fetch among two
processors.

International Journal of KIMICS, Vol. 8, No. 3, September 2008

287

With this, it will enlarge registers’ scalability and more
complex registers operations can be performed even
though processor has just one GPRs. Since this
suggestion requires twice hardware, now the next step is
necessary to integrate {two processors into one processor.

nistructions }' !
Max-x4
L

i GPRs lﬂ-

Instruction Fetch l

Post-Coordinate
Write Back

. [Phase

Write Back

» 2 phase operation ~ combinational instruction
« Bolve vartable registers group with reusing GPRs
» Solve variable dynamic branch

Fig. 6 Dual Phase SIMD architecture

Fig. 6 shows Dual Phase SIMD architecture by
removing unnecessary modules and integrating of
overlapping modules. This is a new one processor
architecture with one GPRs and shared ALU module,
whose functionality is identical to two processor
architecture shown in Fig. 5.

[1{o] Phase #otnst]

(1] _Phose#iinst]

[BIC] Fhase # st) {7T0] Phase #0 inst_ |
types) [GTT] Phasa#1inst_|[1]1] Phase #linst]

[CI6]_Phase#sinst.] [6]o] Phase #0inst_][111] Phese# inst_]

[OJo] Phase #0inst] [B]7] Phase #1 inst_}[F[7] Prase #1inst]

[80]_Phase #o inst. | [D[0]_Phase #0nst J[O11] Phase #11nsL_ | [a]1] Phase #1 Tnst]
(ED)

Fig. 7 Phase bit - Dual phase architecture

Fig. 7 represents dual phase instructions for the Dual
Phase SIMD architecture. Thousands of instruction
combinations are possible implemented by VL-IW
structure. These instruction can be executed in maximum
two phases, and each phase can contain maximum two
instruction fragments. For this representation, additional
two bits are located at the upper MSB, as a phase bit and
an end bit.

Maprimum 4 sitple
e e UGG VEFIBDIO-Tangh
nstruction
Unified common
generat purpose
registers

| enitionh i

Phase #1
Instruction
e . # PhBSES SEOUTAtRG

[PO aperation
Phase #1
input

Common ALUS
Phase #0 i Phase #1
Quiput Qutput

Fig. 8 Dual phase architecture

Phase #0
instruction §

Coordinate Unit Instructi
Inpux - nit Instructions

complex operation

_ Common ALUs for
each phases

. Max 2 outputs far high

Fig. 8 shows a comprehensive architecture of all
presented architectures up to now. It is organized into
two phases. It shares the GPRs and ALUs, It can process
maximum 2 instruction fragments per a phase. Each
phase can designate maximum 2 sources and 1
destination. The phase #1 instruction can coordinate by
phase #0 instruction,

The phase #1 instruction can combine instructions for
compare, branch, compute, or memory access without
any extra exclusive hardware. The phase #1 instruction
can execute more complex instructions by receiving the
expression from phase #0.

2.4 Combination of instruction fragments

The limitations of this instruction structure will be
explained, before showing examples how these complex
instructions can be represented. Instructions can be
combined with maximum 4 instruction fragments and
can perform thousands of operations. Since each phase is
shared to maximize the efficiency of ALU, so there are
exclusive paring rules as shown in Fig. 9.

Phase #0 Phase #1
(rmulabe 0 add def)
(mul abc, repw cy Q add def, rsqw ex)
(_mul.x abc addyz be 0 add.xw def mulyzw ef)
(add.xyz abc {X) add.xdef)
(rep.xab X) repyde)
(mov ab 0) mov de)
(Branch 100 X) Branch 200)
(multaba (X) Indirect(1) a.x, adddef)

+
‘:' """"""""""""" ey g ey
; Phase #0 i Coordinate Phase #1 i
: Input : Input ;
H H
5 { Common ALUS | [Twaroy) |
1] 2 +
[Phase#o [: i Phase#t i
i QOutput i : Output H

.................... - Vmemmsesemanamevmans

Phase #0 operation Phase #1 operation

1 Allow none conflict using arithmetic unit

: X component adder conflict

: Special function is 1 scalar unit

: All phase allow duplicated move instruction

: Branch & memory operation can process only at phase #1
: Some coardinate instructions must be placed at phase #0

Fig. 9 Exclusive pairing rules

For example, the use of same arithmetic units on the
same component at each phase is prohibited. The other
cases of branch or memory instruction fragments can be
performed only on phase #1.

128 bit VL-IW (Variable Length - Instruction Words)
32 bits

[ElP[Bncode] Operand | {EJF[Opcode] Operand | [E]P[Opcode] Gperand | [E]F[Opcode] Operand

« 2 phase operation
* maximum 4 sources
* maximum 2 write back

Ex 1) MUL_sat A, B, A

DOCEER N
Ex2)ADD A, B, G

[Ofe[ABBA] B | [{6] T &~]

Ex 3) ADD A, BIDw], C

[ole[apDR] Dw. J[E[:[ADDA] B. [- | ©. |

Ex 4} ADD_predicate(E) A, B, C[D.w]

[o[oPREDZ € | [BIo[ADDR] Dw. | B[1[APDA] B, J[Ji] - 1 Cu |
Ex 8) MUL A xzw. B.xzw, C.xew MOVAyCy ADDxyz D E F RCP DwFw
[OleIMUCAT Bs | [BIo[™MoV, T G | O[[ASBO] & | [T RGP, | Fu]

Fig. 10 Arithmetic operation with dual phase VL-IW

288 Kwang-Yeob Lee, Second Jae-Chang Kwak : A Design of a 8-Thread Graphics Processor Unit with Variable-Length Instructions

Fig. 10 shows some examples how the proposed
architecture uses ALUs efficiently. Example 1&2 present
that it makes shorter implementations of general
arithmetic operation with small instruction fragments.
Example 3&4 present complex arithmetic operations
coordinated by phase #0 instruction. Example 5 presents
various arithmetic instruction fragments can be combined
into one instruction. This combined instruction can be
executed faster.

Ex 1) BL {PC+120) PG = PC+120

[T R [120]

Ex2)MULA, B, C ADDD,E, F ; duat arithmetic
[lofMuLa] B- J[oJo] - | Cw | [o['[ADDD] Ee [T - 1 Fu]
Ex 3-a) ADD_predicate(E} A, B, C[D.w] ; predicated & indirect afithmetic

[o[oFrepz € | [o[o[ADDR] Dww] [0]7JADDA] 8w [T - Co]

Ex 3-b) if(A.x<@} BL {B.x+120} L#{Ax<0) PC = B.x+ 120 ; Gonditionat branch

; Normal branch

OJCPRED N Axs) [OJ0[ADDR| Bxe |[1[7] BLD | 120)
Ex 4-a) CALL 85 cA = {Axyz, PCY, PC =85 ; Call the function
ofofvovam] Axyzs | [oJo[MvsAx] PCs |[11]BED] 8 |

Ex 4-b) RETURN tAxyz=Ayzw, PC=Ax ; Retum to the previous routine
[oo[wovaw] Ayaw=] BO[ABBR] Ax][] BLO] 0]

Ex 5} for(i=0;i<100;i++){..} Ax=0,Ay=1,Az=100 :Loop

[ololcMPBa] Axw 1]0J0] - T Aze |[1]1]a00Ax] Aye]

|ojolerence] Bxe |[1[{] BIR | 41 |

sea sve osense; 40 unit instructions loop rautine

[PIBLR] <6 |

Fig. 11 Branch and looping operation with dual phase
VL-IW

Fig. 11 shows a part of representations of arithmetic
expressions. As shown in Example 1, the branch instruction
exists, but there is no compare branch mstruction, such as je
or jne, in the x86 system. These instructions can be
represented by ‘predicate’ instruction of phase #0, as shown
in Example 3. Call/return instruction can be represented by
branch instruction and ‘swizzle’ instruction of phase #0. Also
other instructions, such as indirect branch, nested branch,
comparison branch, and looping functions, can be represented
in the similar way. This architecture doesn’t have an extra
instruction penalty.

1. Conclusion

We present a new architecture for using efficient

ALUs with dual phase variable length instruction method.

With the multi-thread dual phase architecture, we can
decrease the instruction implementation cycles length up
to 50%, and the performance is minimum 200% better
than a generic SIMD architecture as shown in Fig. 2.

Instruction
cycles

18

Nested function
call and return

Conditionat
indirect branch

./} Generai VLW - SIMD (Al stall is 2 oycles) KT Muttithread
& Muiti-thread - Dual phase

DOT4 Matrix4

Fig. 12 Architectures’ performance comparison

Fig. 2 shows the performance comparison of generic
SIMD, multi-thread, and multi-thread with dual phase
architecture, using some functions and branch operations
on the 2D and 3D graphics accelerated processor.

This multi-thread with dual phase operation and
variable length instruction words architecture can
provide an efficient performance improvement of ALU.
It also can be applicable to the multimedia acceleration.
This architecture has an optimal processor architecture
with the minimal resources.

ACKNOWLEDGMENT

This work was supported by "Nano IP/SoC Innovative
Promotion Group" and "Ministry of Knowledge
Economy System IC 20610 Project”.

REFERENCES

[1] Liza Fireman, “The Complexity of SIMD Alignment”
Technion — Computer Science Department — M.Sc.
Thesis MSC ~ 2006.

[2] Mauricio Breternitz, Jr., “Compilation, Architectural
Support, and Evaluation of SIMD Graphics Pipeline
Programs on a General-Purpose CPU” Proceedings of
the 12" international conference on parallel
architectures and compilation techniques.

[3] HK. Jeong, “Design of 3D Graphics Geometry
Accelerator using the Programmable Vertex Shader”
ITC-CSCC 2006.

[4] James C. Lelterman, “Learn Vertex and Pixel Shader
Programming with DirectX9” Wordware Publishing,
Inc. 2004.

Kwang Yeob Lee

studied electronics engineering at
Sogang University and Yonsei
University from 1979 to 1987. In 1994
he received the Ph.D from the Yonsei
University. From 1989 to 1995, he was
with Hyundai Electronics as a designer
of System LSI During that time, he
was responsible for the design of microcontroller. In 1995,
he joined the Department of Computer Engineering ,
Seokyeong University. His research interests include
Embedded System, Mobile 3D Graphics Accelerator, SoC
Design.

Jae Chang Kwak

received the B.S degree from Yonsei
University in 1983. He received the
M.S and Ph.D degrees in computer
science from the University of Iowa
in 1989 and 1993, respectively. He is
currently an Professor of Computer
Science at Seokyeong University. His main interests are
Network Traffic control, Realtime Scheduling, Embedded
System, Mobile Graphics System.

