Surface Modification of Poly(vinylidene fluoride) Membranes using Surface Modifying Macromolecules (SMMs) and Their Application to Pervaporation Separation

SMMs을 이용한 고분자막의 표면개질과 이의 투과증발분리 연구

  • Rhim, Ji-Won (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Lee, Byung-Seong (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Kim, Dae-Hoon (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Lee, Bo-Sung (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Yoon, Seok-Won (Korea Electric Power Research Institute) ;
  • Im, Hyeon-Soo (Korea Electric Power Research Institute) ;
  • Moon, Go-Young (Industrial Materials, Research Park, LG Chem. Ltd., Science Town) ;
  • Nam, Sang-Yong (School of Nano and Advanced Materials Engineering, i-Cube Center, Engineering Research Institute, Gyeongsang National University) ;
  • Byun, Hong-Sik (Department of Chemical System Engineering, Keimyung University)
  • 임지원 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 이병성 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 김대훈 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 이보성 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 윤석원 (한국전력공사 전력연구원) ;
  • 임현수 (한국전력공사 전력연구원) ;
  • 문고영 (LG화학기술연구원 산업재연구소) ;
  • 남상용 (경상대학교 신소재공학과 공학연구원 아이큐브사업단) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Published : 2008.09.30

Abstract

Poly(vinylidene fluoride) (PVDF) membrane surfaces were modified using surface modifying macromolecules (SMMs). The Zonyl BA-L as SMM was used and the various PVDF membranes containing 0 to 2 wt% SMM were prepared. The resulting membranes were characterized through SEM, contact angle measurements and pervaporation separation of water-ethanol system. SMM layers were created in the surface regions of PVDF membranes by SEM images and the contact angles were increased more than untreated PVDF membranes. The pervaporation was carried out at 50, 60 and $70^{\circ}C$, and the PVDF membranes containing 1 and 2 wt% SMM were used for 10, 20, 50 wt% water in the binary water/ethanol mixtures and pure water. PVDF/2 wt% Zrlnyl BA-L membrane showed the permeability 5.3 $g/m^2hr$ and separation factor 287 at $50^{\circ}C$ for water : ethanol = 10 : 50 solution.

폴리비닐리덴풀루오라이드(Poly vinylidene fluoride, PVDF) 막을 고분자(Surface Modifying Macromolecules, SMM) 첨가제를 사용하여 표면 개질 하였다. 표면 개질된 PVDF 막의 제조는 0에서부터 2 wt%까지 SMM의 다양한 농도로 제조되었으며, 사용된 SMM으로써는 Zonyl BA-L을 이용하였다. 제조된 막을 이용하여 주사 전자 현미경법(SEM)과 접촉각 측정(Contact angle)을 하였고, 투과증발(Pervaporation)공정을 이용하여 물-에탄올 계의 분리실험을 통해 특성 평가를 하였다. 그 결과 SEM image를 통하여 SMM이 PVDF막 표면에 층을 형성하였음을 알 수 있었고, 접촉각은 기존의 PVDF 막 보다 SMM을 2 wt% 첨가하였을 때 $8^{\circ}$ 증가한 것으로 보아 소수성이 증가한 것을 알 수 있었다. 또한 물-에탄올 계에 대한 투과증발 실험은 다양한 조업온도별(50, 60, $70^{\circ}C$)로 수행하였으며, Zonyl의 함량이 PVDF 대비 1, 2 wt% 함유된 막을 사용하였으며 원액의 조성은 무게비로 물 10, 20, 50, 100%에 대하여 조사하였다. 물 : 에탄을 = 10 : 90 조성, 조업온도 $50^{\circ}C$에서 선택도 287과 투과도 5.3 $g/m^2hr$를 PVDF/2 wt% Zonyl BA-L 막이 보여주었다.

Keywords

References

  1. D. E. Suk, G. Chowdhury, T. Matsuura, R. M. Narbaitz, P. Santerre, G. Pleizier, and Y. Deslandes, 'Study on the kinetics of surface migration of surface modifying macromolecules in membrane preparation', Macromolecules, 35, 3017 (2002) https://doi.org/10.1021/ma011205a
  2. A. C. M. Franken, J. A. M. Nolten, M. H. V. Mulder, D. Bargeman, and C. A. Smolders, 'Wetting criteria for the applicability of membrane distillation', J. Membr., Sci., 33, 315 (1987) https://doi.org/10.1016/S0376-7388(00)80288-4
  3. R. Y. M. Huang, Ed.; Pervaporation Membrane Separation Processes; Elsevier: New York (1991)
  4. V. A. Pham, J. P. Santerre, T. Matsuura, and R. M. Narbaitz, 'Application of surface modifying macromolecules in polyethersulfone membrane: Influence on PES surface chemistry and physical properties', J. Appli. Polym. Sci., 73, 1363 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1363::AID-APP3>3.0.CO;2-P
  5. D. S. Wavhal and E. R. Fisher, 'Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization', J. Membr. Sci., 209, 255 (2002) https://doi.org/10.1016/S0376-7388(02)00352-6
  6. B. Kaeselev, P. Kingshott, and G. Jonsson, 'Influence of the surface structure on the filtration performance of UV-modified PES membranes', Desalination, 146, 265 (2002) https://doi.org/10.1016/S0011-9164(02)00485-X
  7. A. V. R. Reddy, D. J. Mohan, A. Bhattacharya, V. J. Shah, and P. K. Ghosh, 'Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer. I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties', J. Membr. Sci., 214, 211 (2003) https://doi.org/10.1016/S0376-7388(02)00547-1
  8. L. Zhang, G. Chowdhury, C. Feng, T. Matsuura, and R. Narbaitz, 'Effect of surface-modifying macromolecules and membrane morphology on fouling of polyethersulfone ultrafiltration membranes', J. Appl. Polym. Sci., 88, 3132 (2003) https://doi.org/10.1002/app.12000
  9. M. Khayet, 'Membrane surface modification and characterization by X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements', Applied Surface Sci., 238, 269-272 (2004) https://doi.org/10.1016/j.apsusc.2004.05.259
  10. J. J. Schmidt, J. A. Gardella Jr., and L. Salvati Jr., 'Surface studies of polymer blends. 2. An ESCA and IR study of poly(methyl methacrylate)/poly (vinyl chloride) homopolymer blends', Macromolecules, 22, 4489 (1989) https://doi.org/10.1021/ma00202a019
  11. D. R. Iyengar, S. M. Perutz, C. Dai, C. K. Ober, and E. J. Kramer, 'Surface segregation studies of fluorine-containing diblock copolymers', Macromolecules 29, 1229 (1996) https://doi.org/10.1021/ma950544z
  12. S. Affrossman, P. Bertrand, M. Harshorne, T. Kiff, D. Leonard, R. A. Pethrick, and R. W. Richards, 'Surface segregation in blends of polystyrene and perfluorohexane double end capped polystyrene studied by static SIMS, ISS, and XPS', Macromolecules 29, 5432 (1996) https://doi.org/10.1021/ma950900d
  13. W. Chen and T. J. McCarthy, 'Adsorption/migration of a perfluorohexylated fullerence from the bulk to the polymer/air interface', Macromolecules, 32, 2342 (1999) https://doi.org/10.1021/ma981285r
  14. W. K. Lee, I. Losito, J. A. Gardella Jr., and W. L. Hicks Jr., 'Synthesis and surface properties of fluorocarbon end-capped biodegradable polyesters', Macromolecules, 34, 3000 (2001) https://doi.org/10.1021/ma0000327
  15. J. Chen and J. A. Gardella Jr., 'Solvent effects on the surface composition of poly(dimethylsiloxane)- co-polystyrene/polystyrene blends', Macromolecules, 31, 9328 (1998) https://doi.org/10.1021/ma980639b
  16. D. Zhang, D. H. Gracias, R. Ward, M. Gauckler, Y. Tian, Y. R. Shen, and G. A. Somorjai, 'Surface studies of polymer blends by sum frequency vibrational spectroscopy, atomic force microscopy, and contact angle goniometry', J. Phys. Chem., B 102, 6225 (1998) https://doi.org/10.1021/jp981550a
  17. H. Lee and L. A. Archer, 'Functionalizing polymer surfaces by field-induced migration of copolymer additives. I. Role of surface energy gradients.', Macromolecules, 34, 4572 (2001) https://doi.org/10.1021/ma001278e
  18. V. A. Pham, J. P. Santerre, T. Matsuura, and R. M. Narbaitz, 'Application of surface modifying macromolecules in polyethersulfone membranes: influence on PES surface chemistry and physical properties', J. Appl. Polym. Sci., 73, 1363 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1363::AID-APP3>3.0.CO;2-P
  19. J. Y. Ho, T. Matsuura, and J. P. Santerre, 'The effect of fluorinated surface modifying macromolecules on the surface morphology of polyethersulfone membranes', J. Biomater. Sci. Polym., Ed. 11, 1085 (2000) https://doi.org/10.1163/156856200743599
  20. A. Hamza, V. A. Pham, T. Matsuura, and J. P. Santerre, 'Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications', J. Membr. Sci., 131, 217 (1997) https://doi.org/10.1016/S0376-7388(97)00050-1
  21. L. Zhang, G. Chowdhury, C. Feng, T. Matsuura, and R. Narbaitz, 'Effect of surface-modifying macromolecules and membrane morphology on fouling of polyethersulfone ultrafiltration membranes', J. Appl. Polym. Sci., 88, 3132 (2003) https://doi.org/10.1002/app.12000
  22. M. Khayet and T. Matsuura, 'Surface modifica tion of membranes for the separation of volatile organic compounds from water by pervaporation', Desalination, 148, 31-37 (2002) https://doi.org/10.1016/S0011-9164(02)00649-5
  23. J. W. Rhim, C. K. Yeom, and S. W. Kim, 'Modification of poly(vinyl alcohol) membranes using sulfosuccinic acid its application to pervaporation separation of water-alcohol mixtures', J. Appl. Polym. Sci., 68, 1717-1723 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980613)68:11<1717::AID-APP1>3.0.CO;2-M
  24. J. W. Rhim and Y. K. Kim, 'Pervaporation separation of MTBE-Methanol mixtures using crosslinked PVA membrane', J. Appl. Polym. Sci., 75, 1699-1707 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000401)75:14<1699::AID-APP3>3.0.CO;2-O
  25. D. E. Suk, T. Matsuura, H. B. Park, and Y. M. Lee, 'Synthesis of a new type of surface modifying macromolecules (nSMM) and characterization and testing of nSMM blended membranes for membrane distillation', J. Membr. Sci., 277, 177 (2006) https://doi.org/10.1016/j.memsci.2005.10.027