대두 이소플라본 보충과 운동이 폐경 후 여성의 소변 칼슘, 마그네슘, 구리, 아연 배설량에 미치는 영향

Effects of Soy Isoflavones Supplementation and Exercise on Urinary Calcium, Magnecium, Copper and Zinc Excretion in Postmenopausal Women

  • 윤미은 (삼육대학교 식품영양학과) ;
  • 이다홍 (원광대학교 식품영양학과) ;
  • 김미현 (강원대학교 식품영양학과)
  • Yun, Mi-Eun (Department of Food and Nutrition, Sahmyook University) ;
  • Lee, Da-Hong (Department of Food and Nutrition, Wonkwang University) ;
  • Kim, Mi-Hyun (Department of Food and Nutrition, Kangwon National University)
  • 발행 : 2008.10.31

초록

골다공증의 위험율이 높은 폐경 후 여성을 대상으로 이소플라본 보충과 운동의 단독 또는 복합적인 중재가 소변 칼슘, 마그네슘, 구리, 아연배설량에 미치는 영향을 알아보기 위하여 $45{\sim}67$세의 폐경 후 여성 67명을 연령, 체질량 지수와 Base line 골밀도에 차이가 없도록 대조군 (16명), 보충군 (19명), 운동군 (16명), 보충 + 운동군 (16명)으로 나누어 연구를 수행하였다. 보충 + 운동군과 보충군에게는 8주 동안 매일 이소플라본 90 mg을 보충하였으며 운동군과 보충+운동군에게는 함께 운동을 실시한 후 중재 전후의 소변 칼슘, 마그네슘, 구리, 아연 배설량 변화를 측정하여 다음과 같은 결과를 얻었다. 소변의 칼슘, 마그네슘, 구리의 배설량은 유의적인 변화를 보이지 않았다. 그러나 식이 아연의 섭취량이 운동과 이소플라본 보충을 실시하는 동안 변화가 없었음에도 불구하고, 이소플라본 보충군에서 소변 아연의 배설량이 유의적으로 감소하여 이소플라본의 보충이 골대사에 중요한 역할을 하는 아연 보유량을 증가시킨 것으로 나타났다. 이상의 결과를 통하여 폐경 후 여성에서 운동과 이소플라본의 동시 중재가 각각의 중재방법보다 골대사의 향상에 유의적인 상승 작용이 없음을 확인 할 수 있었다. 또한 이소플라본의 단독 보충군에서만 소변의 아연 배설량을 감소시키는 다소 미미한 연구 결과가 제시되었다. 그러나 본 연구는 연구 기간이 짧고, 이소플라본의 보충량이나 운동의 중재방법이 다양하지 못하다는 많은 제한점을 가지고 있으므로, 추후 효과적인 투여 농도와 운동중재 방법을 모색하고, 또한 운동과 기능성 식이성분의 효과적인 복합 중재 방법을 결정 할 수 있는 계속적인 연구가 필요하다고 본다.

This study assessed the effects of soy isoflavones supplementation with exercise on urinary mineral (calcium, magnesium, copper, zinc) excretion as an index of bone resorption rates in 67 postmenopausal women. A total subjects were assigned to Isoflavone (90 mg/day) or placebo groups. These groups were further divided into groups that undergone a regular exercise or a rather sedentary state performing daily activity only. We conducted study eight week period. Result showed urinary zinc excretion was more significantly decreased in the isoflavone-sedentary group ($-180.76\;{\pm}\;171.30\;ug/day$) than in the placebo-sedentary group ($-31.23\;{\pm}\;146.60\;ug/day$), placebo-exercise group ($40.93\;{\pm}\;193.44\;ug/day$) and isoflavione-exercise group ($-1.21\;{\pm}\;160.61\;ug/day$) (p < 0.05), but no significant changes in the differences between the values of the pre and post study values in urinary calcium, magnesium and copper excretion. These results suggest that Isoflavone supplementation decrease urinary zinc excretion rate in postmenopausal subjects.

키워드

참고문헌

  1. Garnero P. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk presiction and therapy monitoring. Mol Diagn Ther 2008; 12(3): 157-170 https://doi.org/10.1007/BF03256280
  2. Namiduru ES, Binnur Erbaqci A, Celik A, Yilmaz M, Tarakcioqlu M. Serum prolidase activity in postmenopausal osteoporosis. Minerva Med 2007; 98(6): 647-651
  3. Gambacciani M, Cappaqli B, Cliapon M, Pepe A, Vacca F, Genazzani AR. Ultra low-dose hormone replacement therapy and bone protection in postmenopausal women. Maturitas 2008; 59 (1): 2-6 https://doi.org/10.1016/j.maturitas.2007.10.007
  4. Choi MJ, Jung YJ. The Effects of Isoflavones Intake Level on Bone Markers and Bone Related Hormones in Growing Female Rats. Korean J Nutr 2008; 41(3): 199-205
  5. Kim MH, Lee DH. A Comparative Study of Bone Mineral Density and Urinary Bone Metabolic Markers according to the Nutrients Intake Levels in Postmenopausal Women. Korean J Nutr 2007; 40(8): 719-727
  6. Choi YH, Sung CJ. Effects of physiological Factors and Lifestyles on Bone Mineral Density in Postmenopausal Women. Korean J Nutr 2007; 40(6): 517-524
  7. Park HM, Seo YS, Hur M. The distribution and transition of postmenopausal population in Korea. J Korean Menopause 1998; 4(1): 61-71
  8. Ogita M, Rached MT, Dworakowski E, Bilezikian JP, Kousteni S. Differentiation and proliferation of periosteal Osteoblast Progenitors are Differentially Regulated by Estrogens and Intermittent PTH Administration. Endocrinology 2008; [Epub ahead of prints]
  9. Hawse JR, Subramaniam M, Monroe DG, Hemmingsen AH, Ingle JN, Khosla S, Oursler MJ, Spelsberg TC. Estrogen Receptor{beta} Isoform-specific Induction of Transforming Growth Factor{beta}-Inducible Early Gene-1 in Human osteoblast cells. Mol Endocrinol 2008; 22(7): 1579-1595 https://doi.org/10.1210/me.2007-0253
  10. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. Evidence of estrogen receptors in human osteoblast-like cells. Science 1988; 241(4861): 84-86 https://doi.org/10.1126/science.3388021
  11. Gallagher JC. Advances in bone biology and new treatments for bone loss. Maturitas 2008; 60(1): 65-69 https://doi.org/10.1016/j.maturitas.2008.04.005
  12. Spelsberg TC, Subramaniam M, Riggs BL, Khosla S. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endocrinol 1999; 13(6): 819-828 https://doi.org/10.1210/me.13.6.819
  13. Rickard DJ, Subramaniam M, Spelsberg TC. Molecular and cellular mechanisms of estrogen action on the skeleton. J Cell Biochem 1999; 32/33(Suppl): 123-132
  14. Robinson JA, Waters KM, Turner RT, Spelsberg TC. Direct action of anturally occurring estrogen metabolites on human osteoblastic cells. J Bone Miner Res 2000; 15(3): 499-506 https://doi.org/10.1359/jbmr.2000.15.3.499
  15. Kim NN, Stankovic M, Armagan A, Cushman TT, Goldstein I, Traish AM. Effects of tamoxifen on vaginal blood flow and epithelial morphology in the rat. BMC Womens Health 2006; 6: 14 https://doi.org/10.1186/1472-6874-6-14
  16. North American Menopause Society. Role of progestogen in hormone therapy for postmenopausal women: position statement of The North American Menopause Society. Menopause 2003; 10(2): 113-132 https://doi.org/10.1097/00042192-200310020-00003
  17. Nechushton H, Peretz T, Harefuah. Tamoxifen and Breast Cancer 2002; 141(8): 718-720
  18. Going S, Lohman T, Houtkooper L, Metcafe L, Flint-Wagner H, Blew R, Stanford V, Cussler E, Martin J, Teixeira P, Harris M, Milleken L, Figueroa-Galvez A, Weber J. Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporosis Int 2003; 14(8): 637-643 https://doi.org/10.1007/s00198-003-1436-x
  19. Shiquemoto GE, Rossi EA, Baldissera V, Gouveia CH, de Valdez Vargas GM, de Andrade Perez SE. Isoflavones-supplemented soy yoghurt associated with resistive physical exercise increase bone mineral density of ovariectomized rats. Maturitas 2007; 57 (3): 261-270 https://doi.org/10.1016/j.maturitas.2007.01.011
  20. Vatanparast H, Chilibeck PD. Dose the effect of soy phytoestrogens on bone postmenopausal women depend on the equolproducing phenotype? Nutr Rev 2007; 65(6 pt 1): 294-299 https://doi.org/10.1111/j.1753-4887.2007.tb00307.x
  21. Wu J, Oka J, Ezaki J, Ohtomo T, Ueno T, Uchiyama S, Toda T, Uebra M, Ishimi Y. Possible role of equol status in the effects of isoflavone on bone and fat mass in postmenopausal Japanese women: a double-blind, randomized, controled trial. Menopause 2007; 4(5): 866-874
  22. Ye YB, Tang XY, Verbruggen MA, Su YX. Soy isoflavones attenuate bone loss in early postmenopausal Chinese women: a singleblind randomized placebo-controlled trial. Eur J Nutr 2006; 45 (6): 327-334 https://doi.org/10.1007/s00394-006-0602-2
  23. Somekawa Y, Chiguchi M, Ishibashi T, Aso T. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet Gynecol 2001; 97 (1): 109-115 https://doi.org/10.1016/S0029-7844(00)01080-2
  24. Brodowska A. The influence of hormonal replacement therapy on bone density in postmenopausal women depending on polymorphism of vitamin D receptor (VDR) and estrogen receptor (ER) genes. Ann Acad Med Stetin 2003; 49: 111-133
  25. Karck U, Breckwoldt M. Low-dose oral contraception and bone density. Ther Umsch 2001; 58(9): 547-551 https://doi.org/10.1024/0040-5930.58.9.547
  26. Bailey DAm McKay HA, Mirwald R, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The university of Saskatchewan bone mineral accrual study. J Bone Miner Res 1999; 14(10): 1672-1679 https://doi.org/10.1359/jbmr.1999.14.10.1672
  27. Sievanen H, McKay H, Heinonen A, Bailey D, Khan K. The Achilles heel of exercise. Lancet 2000; 355(9202): 469-470 https://doi.org/10.1016/S0140-6736(00)82020-6
  28. Loh KY, Shonq HK. Osteoporosis: primary prevention in the community. Med J Malaysia 2007; 62(4): 355-357
  29. Park JH, Omi N, Nosaka T, Kitajima A, Ezawa I. Estrogen deficiency and low-calcium diet increased bone loss and urinary calcium excretion but did not altor arterial stiffness in young female rats. J Bone Miner Metab 2008; 26(3): 218-225 https://doi.org/10.1007/s00774-007-0822-4
  30. Gartner R. Osteoporosis in the elderly-diagnosis and treatment. MMW Fortschr Med 2005; 147(7): 35-36
  31. Bush RA. Female high-school varsity athletics: An opportunity to improve bone mineral density. J Sci Med Sport 2008; [Epub ahead of print]
  32. Arana-Arri E, Gutierrez-Ibarluzea I, Ecenarro Muqaquren A, Asua Batarrita. Prevalence of certain osteoporosis-determing habits among postmenopausal women in the Basque Country Spain in 2003. Rev Esp Salud Publica 2007; 81(6): 647-656 https://doi.org/10.1590/S1135-57272007000600008
  33. Bianco V, Filippi F, Tassan-simonat P, Valente I, D'Amico C, Meroni M. Diet assessment and the screening for osteoporosis: a survey in a healthy menopause population. Minerva Ginecol 2008; 60(4): 299-310
  34. Burrows M, Shepherd H, Bird S, Macleod K, Ward B. The components of the female athlete tried donot identify all physically active female at risk. J Sports Sci 2007; 25(12): 1289-1297 https://doi.org/10.1080/02640410601129714
  35. Estok PJ, Sedlak CA, Doheny MO, Hall R. Structural model for osteoporosis preventing behavior in postmenopausal women. Nurs Res 2007; 56(3): 148-158 https://doi.org/10.1097/01.NNR.0000270031.64810.0c
  36. Schwab P, Klein RF, Nonpharmacological approaches to improve bone health and reduce osteoporosis. Curr Opin Rheumatol 2008; 20(2): 213-217 https://doi.org/10.1097/BOR.0b013e3282f3cbd3
  37. Kamel HK. Postmenopausal osteoporosis: etiology, current diagnostic strategies and nonprescription interventions. J Manaq Care Pharm 2006; 12(6s): s4-9
  38. Carvalho DC, Garlipp CR, Bottini PV, Afaz SH, Moda MA, Cliquet A Jr. Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects. Braz J Med Biol Res 2006; 39(10): 1357-1363 https://doi.org/10.1590/S0100-879X2006001000012
  39. Na HB, Kim HJ, Park J. Effect of calcium supplementation and exercise on bone mineral density in middle aged women. Korean J Nutr 2003;, 35(9): 962-969
  40. Sung CJ, Kim SY, Lee JK, Yun ME, Kim MH. Effect of soymilk and bone mineral density and bone metabolism pelated markers in under-weight college women with low bone density. Korean J Community Nutrition 2003; 5(3): 132-140
  41. Sung CJ, Yun ME, Lee JK, Kim MH, Lee HS. Effects of soy isoflavone supplementation and exercise on bone mineral density and urinary deoxypyridinoline in postmenopausal women. Koran J Nutr 2004; 37(4): 291-301
  42. Lieberman S, Bruning N. The real vitamin & mineral book. Avery publishing group. Garden city park, New york; 1997
  43. Levesgue M, Martineau C, Jumarie C, Moreau R. Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells. Toxicol Appl Pharmacol 2008; [Epub ahead of print]
  44. Wong MY, Lane NE. Medication-induced osteoporosis. Curr Osteoporos Rep 2007; 5(4): 139-145 https://doi.org/10.1007/s11914-007-0008-y
  45. Valente M, Bufalino L, Castiglione GN, D'Angelo R, Mancuso A, Galoppi P, Zichella L. Effects of 1-year treatment with ipriflavone on bone in postmenopausal women with low bone mass. Calcif Tissue Int 1994; 54(5): 377-380 https://doi.org/10.1007/BF00305522
  46. Bureau I, Anderson RA, Arnauud J, Raysiguier Y, Favier AE, Roussel AM. Trace mineral status in post menopausal women: impact of hormonal replacement therapy. J Trace Elem Biol 2002; 16(1): 9-13 https://doi.org/10.1016/S0946-672X(02)80003-7
  47. Kotkowiak L. Behavior of selected bio-elements in women with osteoporosis. Ann Acad Med Stetin 1997; 43: 225-238
  48. Rico H, Roca-Botran C, Hernandez ER, SEco C, Paez E, Valencia MJ, Villa LF. The effect of supplemental copper on osteopenia induced by ovariectomy in rats. Menopause 2000; 7(6): 413-416 https://doi.org/10.1097/00042192-200011000-00007
  49. Klavy LM. Lack of a recommended dietary allowance for copper may be hazardous to your health. J Am Coll Nutri 1998; 17 (4): 322-326 https://doi.org/10.1080/07315724.1998.10718769
  50. Relea P, Revilla M, Ripoll E, Arribas IF, Rico H. Zinc, biochemical markers of nutrition, and type I osteoporosis. Age Ageing 1995; 24(4): 303-307 https://doi.org/10.1093/ageing/24.4.303
  51. Herzberg M, Lusky A, Blonder J, Frenkel Y. The effect of estrogen replacement on zinc in serum and urine. Obstet Gynecol 1996; 87(6): 1035-1040 https://doi.org/10.1016/0029-7844(96)00044-0
  52. Valente M, Bufalino L, Castiglione GN, D'Angelo R, Mancuso A, Galoppi P, Zichella L. Effects of 1-year treatment with ipriflavone on bone in postmenopausal women with low bone mass. Calcif Tissue Int 1994; 54(5): 377-380 https://doi.org/10.1007/BF00305522
  53. Itoh R, Nishiyama N, Suyama Y. Dietary protein intake and urinary excretion of calcium: a cross-sectional study in a healthy Japanese population. Am J Clin Nutr 1998; 67(3): 438-444 https://doi.org/10.1093/ajcn/67.3.438
  54. Munger RG, Cerhan JR, Chiu Chiu BC, Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr 1999; 69(1): 147-152 https://doi.org/10.1093/ajcn/69.1.147
  55. Schlemmer A, Podenphant J, Riis BJ, Christiansen C. Urinary magnesium in early postmenopausal women. influence of hormone therapy on calcium. Magnes Trace Elem 1991; 10(1): 34-39
  56. Lee DH, Sung CJ. Effect of soy isoflavone supplementation on bone metabolism maker and urinary mineral excretion in postmenopausal women. Koran J Nutr 2003; 35(6): 476-482
  57. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JR JW. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenoapusal women. Am J Clin Nutr 1998; 68(s): S1375-S1379 https://doi.org/10.1093/ajcn/68.6.1375S
  58. Alekel DL, Germain AS, Peterson CT, Hanson KB, Stewart JW, Toda T. Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 2000; 72(3): 844-852 https://doi.org/10.1093/ajcn/72.3.844
  59. Recker RR, Saville PD, Heaney RP. Effect of estrogens and calcoum carbonate on bone loss in postmenopausal women. Ann Intern Med 1977; 87: 649-655 https://doi.org/10.7326/0003-4819-87-6-649
  60. Nordin BEC, Morris HA. The calcium deficiency model for osteoporosis. Nut Rev 1989; 47: 65-72 https://doi.org/10.1111/j.1753-4887.1989.tb02794.x
  61. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE, Falconer G, Green CL. Rate of bone loss in postmenopausal women randomized to two dosages of vitamine D. Am J Clin Nutr 1995; 61: 1140-1145 https://doi.org/10.1093/ajcn/61.5.1140
  62. Spence LA, Lipscomb ER, Cadogan J, Martin Br, Peacock M, Wastney M, Weaver CM. Effects of soy isoflavones on calcium kinetics in postmenopausal women. J Bone Miner Res 2001; 16: S532
  63. Lipscomb ER, Spence LA, Cadogan J, Martin Br, Peacock M, Weaver CM. Comparative effects of animal and legume proteins on urinary calcium, urinary sulfate, and urynary net acid excretion and kidney function in postmenopausal women. J Bone Miner Res 2001; 16: S532
  64. Arjmandi BH, Khalil DA, Smith BJ, Lucas EA, Juma S, Payton ME, Wild RA. Soy protein has a greater effect on bone in postmenopausal women not on hormone replacement therapy, as evidenced by reducing bone resorption and urinary calcium excretion. J Clin Endocrinol Metab 2003; 88(3): 1048-1054 https://doi.org/10.1210/jc.2002-020849
  65. Cecchettin M, Bellometti S, Cremonesi G, Solimeno LP, Torri G. Metabolic and bone effects after administration of ipriflavone and salmon calcitonin in postmenopausal osteoporosis. Biomed & Pharmacother 1995; 49: 465-468 https://doi.org/10.1016/0753-3322(96)82691-6
  66. shizawa N, Fujimura R, Tokuyama K, Suzuki M. A bout of resistance exercise increase urinary calcium independently of osteoclast activation in man. J Appl Physio 1997; 83(4): 1159-1163 https://doi.org/10.1152/jappl.1997.83.4.1159
  67. Danz AM, Zittermann A, Schiedermaier U, Klein K, Hotzel D, Schonau E. The effect of a specific strength-development exercise on bone mineral density in perimenopausal and postmenopausal women. J Womens Health 1998; 7(6): 701-709 https://doi.org/10.1089/jwh.1998.7.701
  68. Kaplan B, Neri A, Kitai E, Pardo Y, Blum M, Freidman J. Low dose estrogen replacement therapy in early postmenopausal women effect on urinary magnesium and calcium: creatinine ratios. Clin Exp Obstet Gynecol 1994; 21(3): 170-172
  69. Schlemmer A, Podenphant J, Riis BJ, Christiansen C. Urinary magnesium in early postmenopausal women. influence of hormone therapy on calcium. Magnes Trace Elem 1991; 10(1): 34-39
  70. Mcnair P, Christiansen C, Transbol I. Effect of menopause and estrogen substitutional therapy on magnesiun metabolism. Miner Electrolyte Metab 1984; 10(2): 84-87
  71. Prince LR, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, Harris MM. Prevention of postmenopausal osteoporosis. A comparative study of exercise, calcium supplementation, and hormone-replacement therapy. New England Journal of Medicine 1991; 325: 1189 https://doi.org/10.1056/NEJM199110243251701
  72. Ohry A, Shemesh Y, Zak R, Herzberg M. Zinc and osteoporosis in patients with spinal cord inhury. Paraplegia 1980; 18(3): 174-180
  73. Szathmari M, Steczek K, Szucs J, Hollo I. Zinc excretion in osteoporotic women. Orv Hetil 1993; 134(17): 911-914