김치로부터 분리된 Leuconostoc sp. strain YSK 균주에 의한 덱스트란 생산 조건의 최적화

Process Optimization of Dextran Production by Leuconostoc sp. strain YSK. Isolated from Fermented Kimchi

  • 황승균 (중부대학교 공과대학 한방 건강 식품학과) ;
  • 홍준택 (중부대학교 공과대학 한방 건강 식품학과) ;
  • 정경환 (충주대학교 식품생명공학과) ;
  • 장병철 (계명대학교 의과대학) ;
  • 황경숙 (목원대학교 생명산업학부) ;
  • 신정희 (중부대학교 식품영양학과) ;
  • 임성팔 (한국원자력 연구원) ;
  • 유선균 (중부대학교 공과대학 한방 건강 식품학과)
  • Hwang, Seung-Kyun (Department of Oriental Medicine and FoodBiotechnology, Joongbu University) ;
  • Hong, Jun-Taek (Department of Oriental Medicine and FoodBiotechnology, Joongbu University) ;
  • Jung, Kyung-Hwan (Department of Food and Biotechnology, Chungju University) ;
  • Chang, Byung-Chul (Department of Medical Genetic Engineering, Keimyung University School of Medicine and Institute for Medical Science) ;
  • Hwang, Kyung-Suk (Department of Biotechnology, Mokwon University) ;
  • Shin, Jung-Hee (Department of Food and Nutrition, Joongbu University) ;
  • Yim, Sung-Paal (Korea Atomic Energy Research Institute) ;
  • Yoo, Sun-Kyun (Department of Oriental Medicine and FoodBiotechnology, Joongbu University)
  • 발행 : 2008.10.30


본 연구는 발효 김치 액으로부터 덱스트란 생산 균주를 분리하고 생산 최적 생산 조건을 정하기 위하여 반응표면 분석법을 이용하였다. 발효 조건의 독립변수들은 배양 온도,pH, 효모 추출물의 농도, 온도, 기질의 농도로 정하고 Box- Benken 디자인를 이용하여 실험을 설계하였다. 최종 분리된 균주는 Leuconostoc sp. strain SKY로 잠정적으로 명하였다. 연구 결과 덱스트란 생산은 3.90 - 22.40 g/l이고, 균체량 생산은 0.69-2.85 g/l, 수율은 0.10-0.64, 생산 속도 0.16-0.85 g/l-hr의 범위에서 분석이 되었다. 표면반응분석 결과 덱스트란 생산에 가장 영향을 미치는 것은 배양 pH이고 다음에 효모 추출물의 농도 그리고 온도의 순으로 나타났다. 균체량 생산에 가장 영향을 미치는 것은 배양 pH이고 다음에 효모 추출물의 농도 그리고 온도의 순으로 나타났다. 생산 수율에 가장 영향을 미치는 것은 배양 pH 이고 다음에 효모 추출물의 농도 그리고 온도의 순으로 나타났다. 덱스트란 생산 속도에 가장 영향을 미치는 것은 배양 pH이고 다음에 효모 추출물의 농도 그리고 온도의 순으로 나타났다. 결론적으로 최적 생산 조건은 온도는 $27-28^{\circ}C$이고, pH는 7.0이며, 효묘 추출물은 6-7%의 범위에서 결정이 되었다. 이러한 조건에서 생산된 덱스트란 양은 22g/l이고, 생산 수율은 약 60%정도이며, 생산 속도는 0.8g/l/hr이었다.

A bacterium producing non- or partially digestible dextran was isolated from kimchi broth by enrichment culture technique. The bacterium was identified tentatively as Leuconostoc sp. strain SKY. We established the response surface methodology (Box-Behnken design) to optimize the principle parameters such as culture pH, temperature, and yeast extract concentration for maximizing production of dextran. The ranges of parameters were determined based on prior screening works done at our laboratory and accordingly chosen as 5.5, 6.5, and 7.5 for pH, 25, 30, and $35^{\circ}C$ for temperature, and 1, 5, and 9 g/l yeast extract. Initial concentration of sucrose was 100 g/l. The mineral medium consisted of 3.0 g $KH_2PO_4$, 0.01 g $FeSO_4{\cdot}H_2O$, 0.01 g $MnSO_4{\cdot}4H_2O$, 0.2 g $MgSO_4{\cdot}7H_2O$, 0.01 g NaCl, and 0.05 g $CaCO_3$ per 1 liter deionized water. The optimum values of pH and temperature, and yeast extract concentration were obtained at pH (around 7.0), temperature (27 to $28^{\circ}C$), and yeast extract (6 to 7 g/l). The best dextran yield was 60% (dextran/g sucrose). The best dextran productivity was 0.8 g/h-l.


  1. Alsop, R. M. 1983. Industrial production of dextran in "Progress in industrial Microbiology", In Bushell, M. E. (ed.), Vol. 1, Elsevier Amsterdam 18, 1-44.
  2. Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87, 113-130.
  3. Battersby, R., W. Clark, E. Hancock, N. Puchulucampanella, D. Haggarty and D. Harding. 1996. Sustained release of recombinant human growth hormone from dextran via hydrolysis of animine bond. J. Control Rel. 42, 143-156.
  4. Cadee, J. A., W. Groot, W. Jiskoot and W. E. Hennink. 2002. Release of recombinant human interleukin-2 from dextran-based hydrogels. J. Control Release 17, 1-13.
  5. Dols, M., W. Chraibi, M. Remaud-Simeon, N. D. Lindley and P. F. Monsan. 1997. Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl. Envrion. Microbiol. 63, 2159-2165.
  6. Hennink, W. E., O. Franssen, W. N. E. van Dijk-Wolthuis and H. Talsma. 1997. Dextran hydrogels for the controlled release of proteins. J. Control Release 48, 107-114.
  7. Jin, F., Y. Cheng and K. Toda. 1988. Distribution model for the intact urokinase and urokinases modified by soluble macromolecules in rat and mouse bodies. Radioisotopes 27, 441-447.
  8. Kim, D. and J. F. Robyt. 1994. Selection of Leuconostoc mesenteroides mutants constitutive for glucansucrases. Enzyme Microbiol Technol. 16, 1010-1015.
  9. Kim, D., K. H. Park and J. F. Robyt. 1998. Acarbose effect for dextran synthesis, acceptor and disproportionation reactions of Leuconostoc mesenteroides B-512FMCM dextransucrase. J. Microbiol. Biotechnol. 8, 287-290.
  10. Kim, D., Y. M. Kim, M. R. Park and D. H. Park. 1999. Modification of Acetobacter xylinum bacterial cellulose using dextransucrase and alternansucrase. J. Microbiol. Biotechnol. 9, 704-708.
  11. Kim, D., Y. M. Kim, M. R. Park, H. J. Ryu, D. H. Park and J. F. Robyt. 1999. Enzymatic modification of cellulose using Leuconostoc mesenteroides B-742CBM dextransucrase. J. Microbiol. Biotechnol. 9, 529-533.
  12. Kobayashi, M and K. Matsuda. 1974. The dextransucrase isoenzymes of Leuconostoc mesenteroides NRRL B-1299. Biochim. Biophys. Acta. 370, 441-449.
  13. Leathers, T. D. 2005. Dextran. In biotechnology and Bioploymer. pp. 575-597, Vol. 1, Wiley-VCH.
  14. Mikolajczyk, S. D., D. L. Meyer, R. Fagnani, M. S. Hagan, K. L. Law and J. J. Starling. 1966. Dextran modification of a Fab $\beta$-lactamase conjugate modulated by variable pre-treatment of Fab with amine-blocking reagents. Bioconjug. Chem. 7, 150-158.
  15. Miller, A. W and J. F. Robyt. 1986. Functional molecular size and structure of dextransucrase by radiation inactivation and gel electrophoresis. Biochimi. Biophysi. Acta. 870, 198-203.
  16. Paul, F. D. E., Auriol and P. Monsan. 1984. Production and purification of dextransucrase from Leuconostoc mesenteroides NRRL B-512 (F). In Enzyme engineering 7, A. I. Laskin, G.T. Tsao, and L. B. Wingard, pp. 267-271. New York Academy of Science, New York, NY.
  17. Robyt, J. F. 1986. Encyclopedia of polymer science and technology, pp. 752-767, 4th eds., John Wiley & Sons, New York, USA.
  18. Teien, A. N., R. Odegard and T. B. Christensen. 1975. Heparin coupled to albumin, dextran and ficoll: influence on blood coagulation and platelets, and in vivo duration. Thromb. Res. 7, 273-284.
  19. Tsuchiya, H. M., H. J. Koepsell, J. Corman, J. Bryant, G. Bogard, V. H. Feger and R. W. Jackson. 1952. The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. J. Bacteriol. 64, 5241-5246.
  20. Tsuchiya, H. M. 1960. Detxransucrase. Bull. Soc. Chim. Biol. 42, 1777-1788.
  21. Yoo, S. K., D. O. Kim and D. F. Day. 2001. Co-production of dextran and mannitol by Leuconostoc mesenteroides. J. Microbiol. Biotechnol. 11, 880-883.
  22. Yoo, S. K., S. S. Hur, K. M. Kim, S. H. Song and K. S. Whang. 2005. Optimization of mannitol production by Leuconostoc mesenteroides sp. strain JFY. J. Life Sci. 15, 374-381.

피인용 문헌

  1. Physicochemical Properties of Dextran Produced by Leuconostoc mesenteroides SM according to Concentration of Yeast Extract and its Modulation of Rheological Properties vol.44, pp.2, 2012,
  2. Effects of differences between cell-free and cell-associated glucosyltransferases fromLeuconostoc mesenteroideson gluco-oligosaccharides structure vol.50, pp.7, 2015,
  3. Optimization of enzymatic hydrolysis of viscera waste proteins of black body fowl(Yeonsan Ogae) to produce peptides using a commercial protease and it's characters analysis vol.14, pp.1, 2016,
  4. Dextran-like exopolysaccharide-producing Leuconostoc and Weissella from kimchi and its ingredients vol.22, pp.4, 2013,
  5. Optimization of Peptide Production from Leg Meat of Yeonsan Ogae by High Hydrostatic Pressure and Protein Hydrolytic Enzyme and Its Characteristic Analysis vol.17, pp.7, 2016,