DOI QR코드

DOI QR Code

Isolation of Endophytic Fungi Capable of Plant Growth Promotion from Monocots Inhabited in the Coastal Sand Dunes of Korea

사구에 서식하는 단자엽식물로부터 식물 생장 촉진 활성 내생 진균류의 분리

  • Khan, Sumera Afzal (Department of Life Science and Biotechnology, Kyungpook National University) ;
  • Hamayun, Muhammad (Department of Agronomy, Kyungpook National University) ;
  • Rim, Soon-Ok (Department of Life Science and Biotechnology, Kyungpook National University) ;
  • Lee, In-Jung (Department of Agronomy, Kyungpook National University) ;
  • Seu, Jong-Chul (Department of Geography Education, Daegu Catholic University) ;
  • Choo, Yeon-Sik (Department of Biology, Kyungpook National University) ;
  • Jin, Ing-Nyol (Department of Life Science and Biotechnology, Kyungpook National University) ;
  • Kim, Sang-Dal (Department of Applied Biotechnology, Yungnam University) ;
  • Lee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Jong-Guk (Department of Life Science and Biotechnology, Kyungpook National University)
  • ;
  • ;
  • 임순옥 (경북대학교 생명공학부) ;
  • 이인중 (경북대학교 식물생명과학) ;
  • 서종철 (대구가톨릭대학교 지리교육과) ;
  • 추연식 (경북대학교 생물학과) ;
  • 진익렬 (경북대학교 생명공학부) ;
  • 김상달 (영남대학교 자연자원대학) ;
  • 이인구 (경북대학교 응용생물화학) ;
  • 김종국 (경북대학교 생명공학부)
  • Published : 2008.10.30

Abstract

Endophytic fungi predominantly inhabit grasses, and produce a variety of beneficial metabolites for plant growth, as well as help their hosts against pathogens and herbivores. Current study was focused on plant growth promoting activity of endophytic fungi inhabited in the roots of sand dune grasses. We collected 49 fungal isolates from the roots of four most common sand dune grasses and screened them for their growth promoting capacity. Results showed that 37 fungal isolates (75.5%) promoted plant height and shoot length of waito-c rice, 11 fungal isolates (22.5%) suppressed it, while 1 fungus (2%) showed no effect on the growth attributes. The fungal strain Gibberella fujikuroi, along with distilled water and Czapek broth medium, were taken as control for this experiment. It was concluded that a major proportion of endophytic fungi inhabited in the sand dune plants produce metabolites, and thus help in growth and development of the host plant.

내생성 진균류는 초본류의 식물체 내에 주로 서식하며, 식물의 병원균으로부터 숙주를 보호할 뿐만 아니라, 식물 생육에 유리하게 작용하는 다양한 대사 산물을 생산한다. 매우 흔히 접할 수 있는 사구식물의 뿌리로부터 49종의 균류를 분리하여 식물 생장 촉진 활성이 있는 균주를 선별하였다. 결과적으로 37균주(75.5%)는 awito-c 벼의 생육을 촉진하였으며, 11균주(22.5%)는 생육을 저해하였으며, 1균주(2%)는 생육에 아무런 영향을 미치지 않았다. Gibberella fujikuroi와 증류수 및 Czapek broth 배지를 control 로 사용하여 실험을 수행하였다. 결론적으로 사구식물 내생균류의 많은 부분은 숙주식물의 생육과 발달을 조장하는 대사 산물을 생산함을 알 수 있었다.

Keywords

References

  1. Bacon, C. W. and J. F. White Jr. 2000. Physiological adaptations in the evolution of endophytism in the Clavicipitaceae, pp. 237-261, In Bacon, C. W. and J. F. White Jr (eds.), Microbial endophytes. Marcel Dekker, Inc., New York.
  2. Bayman, B., L. L. Lebron, R. L. Tremblay and D. J. Lodge. 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol. 135, 143-149. https://doi.org/10.1046/j.1469-8137.1997.00618.x
  3. Belesky, D. P. and D. P. Malinowski. 2000. Abiotic stresses and morphological plasticity and chemical adaptations of Neotyphodium-infected tall fescue plants, pp. 455-484, In Bacon, C.W. and J. F. White Jr (eds.), Microbial endophytes. New York.
  4. Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, I. K. Rhee, J. B. Kwon and J. G. Kim. 2005. Isolation of gibberellins producing fungi from the root of several Sesamum indicum plants. J. Microbiol. Biotechnol. 15, 22-28.
  5. Clay, K. and J. Holah. 1999. Fungal endophyte symbiosis and plant diversity in successional fields. Science 285, 1742-1744. https://doi.org/10.1126/science.285.5434.1742
  6. Cragg, G. M., D. J. Newman and K. M. Snader. 1997. Natural products in drug discovery and development. J. Nat. Prod. 60, 52-60. https://doi.org/10.1021/np9604893
  7. Girard, M., C. Lavoie and M. Theriault. 2002. The regeneration of a highly disturbed ecosystem: a mined peat land in southern Quebec. Ecosystems 5, 274-288. https://doi.org/10.1007/s10021-001-0071-7
  8. Hasan, H. A. H. 2002. Gibberellin and auxin production plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinna vyroba 48, 101-106.
  9. Higgs, R. E., A. Z. James, D. G. Jeffrey and D. H. Matthew. 2001. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67, 371-376. https://doi.org/10.1128/AEM.67.1.371-376.2001
  10. Hill, N. S., J. G. Pachon and C. W. Bacon. 1996. Acremonium coenophialum- mediated short- and long-term drought acclimation in tall fescue. Crop Sci. 36, 665-672. https://doi.org/10.2135/cropsci1996.0011183X003600030025x
  11. Kim, K. D. 2005. Invasive plants on disturbed Korean sand dunes. Est. Coast. Shelf Sci. 62, 353-364. https://doi.org/10.1016/j.ecss.2004.09.023
  12. Lewis, D. H. 1985. Symbiosis and mutualism: Crisp concepts and soggy semantics, . pp. 29-39, In Boucher, D. H. (ed.), The Biology of Mutualism, Croom Helm Ltd., London.
  13. Mineo, L. 1990. Plant tissue culture techniques, In Tested studies in laboratory teachings Proc ABLE. 11, 151-174.
  14. Morton, J. B. 2000. Biodiversity and evolution in mycorrhizae in the desert. pp. 3-30, In Bacon, C. W. and J. F. J. White (eds.), Microbial Endophytes, Marcel Dekker, Inc., New York.
  15. Redman, R. S., K. B. Sheehan, R. G. Stout, R. J. Rodriguez and J. M. Henson. 2002. Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298, 1581. https://doi.org/10.1126/science.1072191
  16. Rim, S. O., J. H. Lee, W. Y. Choi, S. K. Hwang, S. J. Suh, I. J. Lee, I. K. Rhee and J. G. Kim. 2006. Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J. Microbiol. Biotechnol. 15, 809-814.
  17. Rodriguez, R. J. and R. S. Redman. 1997. Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes. Adv. Bot. Res. 24, 169-193. https://doi.org/10.1016/S0065-2296(08)60073-7
  18. Rodriguez, R. J., R. S. Redman and J. M. Henson. 2004. The Role of Fungal Symbioses in the Adaptation of Plants to High Stress Environments. Mitigation and Adaptation Strategies for Global Change 9, 261-272. https://doi.org/10.1023/B:MITI.0000029922.31110.97
  19. Scannerini, S., A. Fusconi and M. Mucciarelli. 2001. The effect of endophytic fungi on host plant morphogenesis, pp. 427-447, In Seckbach, J. (ed.), Cellular origin and life in extreme habitats. Symbiosis.
  20. Siegel, M. R. and L. P. Bush. 1997. Toxin production in grass/endophyte associations, pp. 185-207, In Carroll, G. C. and P. Tudzynski (eds.), The Mycota, Heidelberg, Springer-Verlag.
  21. Varma, A., A. Singh, N. S. Sudha Sahay, J. Sharma, A. Roy, M. Kumari, D. Rana, S. Thakran, D. Deka, K. Bharti, T. Hurek, O. Blechert, K. H. Rexer, G. Kost, A. Hahn, W. Maier, M. Walter, D. Strack and I. Kranner. 2001. Pyriformospora indica: an axenically culturable mycorrhizallike endosymbiotic fungus, pp. 125-150, In Hock, B. (ed.), The mycota IX. Fungal Assoc. Berlin, Heidelberg, Germany.
  22. Vazquez, M. M., S. Cesar, R. Azcon and J. M. Baream. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil. Ecol. 15, 261-272. https://doi.org/10.1016/S0929-1393(00)00075-5
  23. Yamada, A., T. Ogura, Y. Degawa and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42, 43-50. https://doi.org/10.1007/BF02463974

Cited by

  1. Genetic Diversity of Endophytic Fungi Isolated from the Roots of Halophytes Naturally Growing in Suncheon Bay vol.40, pp.1, 2012, https://doi.org/10.4489/KJM.2012.40.1.007
  2. Genetic Diversity of Culturable Endophytic Fungi Isolated from Halophytes Naturally Growing in Muan Salt Marsh vol.22, pp.7, 2012, https://doi.org/10.5352/JLS.2012.22.7.970
  3. Diversity and Plant Growth-Promotion of Endophytic Fungi Isolated from the Roots of Plants in Dokdo Islands vol.21, pp.7, 2011, https://doi.org/10.5352/JLS.2011.21.7.992
  4. Plant Growth-Promoting Activity of Endophytic Fungi Isolated from the Roots of Native Plants in Dokdo Islands vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1619
  5. Diversity of Endophytic Fungi from the Roots of Halophytes Growing in Go-chang Salt Marsh vol.40, pp.2, 2012, https://doi.org/10.4489/KJM.2012.40.2.86
  6. Plant Growth-Promoting Activity and Genetic Diversity of Endophytic Fungi Isolated from Native Plants in Dokdo Islands for Restoration of a Coastal Ecosystem vol.23, pp.1, 2013, https://doi.org/10.5352/JLS.2013.23.1.95
  7. Effects of Endophytic Fungal Secondary Metabolites on the Growth and Physiological Response of Carex kobomugi Ohwi vol.27, 2011, https://doi.org/10.2112/JCOASTRES-D-10-00090.1
  8. Plant Growth Promotion of Calystegia soldanella and Ischaemum anthephoroides by the Strain Penicillium citrinum KACC43900 vol.20, pp.9, 2010, https://doi.org/10.5352/JLS.2010.20.9.1373