DOI QR코드

DOI QR Code

Spatial Autocorrelation Analysis among Subpopulations of Salix koriyanagi in Swampy Area at the Namgang River, Korea

남강 습지에 분포하는 키버들 집단의 공간적 상관 분석

  • Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
  • 허만규 (동의대학교 분자생물학과)
  • Published : 2008.10.30

Abstract

Salix koriyanagi is a deciduous shrub and native to Korea. The spatial distribution of multilocus allelic frequencies and geographical distances of the natural population in upper swampy area at the Namgang River in Korea were studied. The species showed a significant positive and negative spatial autocorrelation according to geographical distances as measured by Moran's I. Genetic similarity of individuals was found among subpopulations at up to a scale of a 12 m distance, and this was partly due to a combination of allelic frequencies, and therefore, a significant spatial autocorrelation was composed of a scale of 12 m intervals. Within S. koriyanagi in swampy area at the Namgang River, a strong spatial structure was observed for allozyme markers, indicating a migration within subpopulations.

키버들(Salix koriyanagi)은 관목으로 한국에 고유종이다. 전분 젤 전기영동을 사용하여 남강 상류 저습지에 분포하는 키버들 집단에서 유전적 다양성과 집단구조를 분석하기 위해 집단을 세분하였다. Moran's I값으로 세분화 된 1.0 m 간격별 구간 내 개체들의 대립유전자좌위에서 유의한 상관을 조사한 결과 약 6 m 간격 내 개체들의 뭉침이 나타났으며, 12 m 이상일 경우 유의한 차이가 나타났다. 따라서 키버들의 경우 집단구조가 12 m 이내에서 형성됨을 알 수 있었다. 대부분의 집단이 제한된 유전자 유동과 유효집단의 감소가 예상되며, 겨울철 가뭄과 여름철 홍수로 심한 병목을 유발하고, 주기적인 홍수와 배수로 인한 개체 수의 교란이 발생한 것으로 판단된다.

Keywords

References

  1. Argyres, A. Z. and J. Schmitt. 1991. Microgeographic genetic structure of morphological and life history traits in a natural population of Impatiens capensis. Evolution 45, 178-189. https://doi.org/10.2307/2409492
  2. Barrett, S. C. H., C. G. Eckert and B. C. Husband. 1993. Evolutionary processes in aquatic plant populations. Aquat. Bot. 44, 105-145. https://doi.org/10.1016/0304-3770(93)90068-8
  3. Cassens, I., R. Tiedemann, F. Suchentrunk and G. B. Hartl. 2000. Mitochondrial DNA variation in the European otter (Lutra lutra) and the use of spatial autocorrelation analysis in conservation. J. Hered. 91, 31-34. https://doi.org/10.1093/jhered/91.1.31
  4. Clayton, J. W. and D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29, 1169-1172. https://doi.org/10.1139/f72-172
  5. Cliff, A. D. and J. K. Ord. 1971. Evaluating the percentage points of a spatial autocorrelation coefficient. Geographical Analysis 3, 51-62.
  6. Dewey, S. E. and J. S. Heywood. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42, 834-838. https://doi.org/10.2307/2408877
  7. Epperson, B. K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics 124, 757-771.
  8. Epperson, B. K. 1995. Fine-scale spatial structure: correlations for individual genotypes differ from those for local gene frequencies. Evolution 49, 1022-1026. https://doi.org/10.2307/2410424
  9. Epperson, B. K. and R. W. Allard. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121, 369-377.
  10. Hamrick, J. L., M. J. W. Godt and S. L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124. https://doi.org/10.1007/BF00120641
  11. Kalisz, S., J. D. Nason, F. A. Hanzawa and S. J. Tonsor. 2001. Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55, 1560-1568. https://doi.org/10.1111/j.0014-3820.2001.tb00675.x
  12. Krebs, C. J. 2001. Ecology. The Experimental and Analysis of Distribution and Abundance. pp. 695, Addison Wesley Longman, Inc., San Francisco, California.
  13. Lee, C. S., Y. H. You and G. R. Robinson. 2002. Secondary succession and natural habitat restoration in abandoned rice fields of central Korea. Restoration Ecology 10, 306-314. https://doi.org/10.1046/j.1526-100X.2002.00003.x
  14. Levin, D. A. 1984. Inbreeding depression and proximitydependent crossing succession in Phlox drummondii. Evolution 38, 116-127. https://doi.org/10.2307/2408551
  15. Levy, F. and C. L. Neal. 1999. Spatial and temporal genetic structure in chloroplast and allozyme markers in Phacelia dubia implicate genetic drift. Heredity 82, 422-431. https://doi.org/10.1038/sj.hdy.6885000
  16. Ohsawa, R., N. Furuya and Y. Ukai. 1993. Effects of spatially restricted pollen flow on spatial genetic structure of an animal-pollinated allogamous plant. Heredity 71, 64-73. https://doi.org/10.1038/hdy.1993.108
  17. Parker, K. C., J. L. Hamrick, A. J. Parker and J. D. Nason. 2001. Fine scale genetic structure in Pinus clausa (Pinaceae) populations: effects of distribution history. Heredity 87, 99-113. https://doi.org/10.1046/j.1365-2540.2001.00914.x
  18. Sakai, R. R. and N. L. Oden. 1983. Spatial pattern of sex expression in silver maple (Acer saccharium L.): Morisita's index and spatial autocorrelation. Am. Nat. 122, 489-508. https://doi.org/10.1086/284151
  19. Sokal, R. R and N. L. Oden. 1978a. Spatial autocorrelation in biology 1. Methodology. Biol. J. Linn. Soc. 10, 199-228. https://doi.org/10.1111/j.1095-8312.1978.tb00013.x
  20. Sokal, R. R and N. L. Oden. 1978b. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10, 229-249.
  21. Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern. J. 73, 9-27. https://doi.org/10.2307/1546611
  22. Van Dijk, H. 1987. A method for the estimation of gene flow parameters from a population structure caused by restricted gene flow and genetic drift. Theor. Appl. Genet. 73, 724-736. https://doi.org/10.1007/BF00260783