Effect of Particle Size on the Atomic Structure of Amorphous Silica Nanoparticles: Solid-state NMR and Quantum Chemical Calculations

비정질 규산염 나노입자의 입자 크기에 따른 원자 구조 변화 : 고상 핵자기공명 분석 및 양자화학계산 연구

  • Kim, Hyun-Na (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung-Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 김현나 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Published : 2008.09.30

Abstract

Amorphous silica nanoparticles are among the most fundamental $SiO_2$ compounds, having implications in diverse geological processes and technological applications. Here, we explore structural details of amorphous silica nanoparticles with varying particle sizes (7 and 14 nm) using $^{29}Si$ and $^{1}H$ MAS NMR spectroscopy together with quantum chemical calculations to have better prospect for their size-dependent atomic structures. $^{29}Si$ MAS NMR spectra at 9.4 T resolve $Q^2,\;Q^3$ and $Q^4$ species at -93 ppm, -101 ppm, -110 ppm, respectively. The fractions of $Q^2,\;Q^3,\;O^4$ species are $7{\pm}1%,\;27{\pm}2%$, and $66{\pm}2%$ for 7 nm amorphous silica nanoparticles and $6{\pm}1%,\;21{\pm}2%$, and $73{\pm}2%$ for 14 nm amorphous silica nanoparticles. Whereas it has been suggested that $Q^2$ and $Q^3$ species exist on particles surfaces, the difference in $Q^{2}\;+\;Q^{3}$ fraction in both 7 and 14 nm particles is not significant, suggesting that $Q^2$ and $Q^3$ species could exist inside particles. $^{1}H$ MAS NMR spectra at 11.7 T shows diverse hydrogen environments, including physisorbed water, hydrogen bonded silanol, and non-hydrogen bonded silanol with varying hydrogen bond strength. The hydrogen contents in the 7nm silica nanoparticles (including water and hydroxyl groups) are about 3 times of that of 14 nm particles. The larger chemical shills for proton environments in the former suggest stronger hydrogen bond strength. The fractions of non-hydrogen bonded silanols in the 14 nm amorphous silica nanoparticles are larger than those in 7 nm amorphous silica nanoparticles. This observation suggests closer proximity among hydrogen atoms in the nanoparticles with smaller diameter. The current results with high-resolution solid-state NMR reveal previously unknown structural details in amorphous silica nanoparticles with particle size.

비정질 규산염 나노입자는 지각에 풍부한 규소와 산소로 이루어진 비다공성 나노입자로서 광물학을 포함한 지구환경과학과 산업적 측면에서 모두 중요한 물질이다. 본 연구에서는 $^{1}H$$^{29}Si$ MAS NMR분광분석을 통해 7 nm와 14 nm 규산염 나노입자의 규소와 수소 원자 환경을 측정하고, 입자 크기에 따른 규산염 나노입자 원자 환경 변화를 규명하였다. NMR 스펙트럼의 화학적 이동 값의 이론적 배경을 이해하기 위해 양자화학계간을 통해 $Si_{3}O_{6}H_6,\;Si_{4}O_{5}H_{10},\;Si_{5}O_{4}H_{12}$ 분자계간모델의 화학 차폐를 계산하였다. $^{29}Si$ MAS NMR의 결과, 이중 실라놀(geminal silanol)과 단일 실라놀(single silanol), 실록산(siloxane) 구조의 Si 원자 환경에 해당하는 $Q^2,\;Q^3,\;O^4$가 구분되어 나타나며 입자 크기에 따라 $Q^2,\;Q^3,\;O^4$가 7 nm규산염 나노입자에는 $7{\pm}1%,\;27{\pm}2%,\;66{\pm}2%$, 14 nm 규산염 나노입자에는 $6{\pm}1%,\;21{\pm}2%,\;73{\pm}2%$의 분포를 갖는다. $Q^2,\;Q^3$ 구조는 나노 입자의 표면적에 대부분 존재하는 것으로 예상되었으나, 두 규산염 나노입자의 표면적 차이에 비해 $Q^2,\;Q^3$ 양의 차이가 적으며, 이는 입자 표면 뿐 아니라 입자 내부에도 $Q^2,\;Q^3$ 구조가 존재함을 의미한다. $^{1}H$ MAS NMR 스펙트럼은 물리흡착 된 물(physisorbed water), 수소결합 된 수산기(hydrogen bended silanol), 비 수소결합 된 수산기(non-hydrogen bonded silanol)를 구분하여 나타낸다. 14 nm 비정질 규산염 나노입자에 비해 7nm 나노입자에 약 3.4 배의 수소 원자가 존재하며, 더 강한 수소결합 세기를 갖는다. 전체 수산기 중에서 비 수소결합 된 수산기가 차지하는 비율이 7 nm 규산염 나노입자 보다 14 nm 규산염 나노입자에서 더 높으며, 이는 수소 원자간의 상대적 거리(proximity)가 14 nm 임자에서 더 긴 것을 지시한다. 본 연구결과를 통하여 현재까지 알려지지 않은 규산염 나노입자의 입자의기에 의한 다양한 원자 구조의 변화를 규명하였다.

Keywords

References

  1. 김수진 (1996) 광물과학. 우성, 서울, 268p
  2. Altman, I.S., Lee, D., Chung, J.D., Song, J., and Choi, M. (2001) Light absorption of silica nanoparticles. Physical Review B, 63(16), 161402 https://doi.org/10.1103/PhysRevB.63.161402
  3. Bronnimann, C.E., Zeigler, R.C., and Maciel, G.E. (1988) Proton NMR-study of dehydration of the silica- gel surface. Journal of the American Chemical Society, 110(7), 2023-2026 https://doi.org/10.1021/ja00215a001
  4. Cannas, C., Casu, M., Musinu, A., and Piccaluga, G. (2004) Si-29 CPMAS NMR and near-IR study of sol-gel microporous silica with tunable surface area. Journal of Non-Crystalline Solids, 351(43-45), 3476-3482 https://doi.org/10.1016/j.jnoncrysol.2005.09.005
  5. Collart, O., Van Der Voort, P., Vansant, E.F., Desplantier, D., Galarneau, A., Di Renzo, F., and Fajula, F. (2001) A high-yield reproducible synthesis of MCM -48 starting from fumed silica.. Journal of Physical Chemistry B, 105(51), 12771-12777 https://doi.org/10.1021/jp013037u
  6. DelaCaillerie, J.B.D., Aimeur, M.R., ElKortobi, Y., and Legrand, A.P. (1997) Water adsorption on pyrogenic silica followed by H-1 MAS NMR. Journal of Colloid and Interface Science, 194(2), 434-439 https://doi.org/10.1006/jcis.1997.5126
  7. Graetsch, H. (1994). Structural characteristics of opaline and microcrystalline silica minerals. Reviews in Mineralogy and Geochemistry 29(1): 209-232
  8. Gribb, A.A. and Banfield, J.F. (1997) Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 82(7-8), 717-728 https://doi.org/10.2138/am-1997-7-809
  9. Gun'ko, V.M. and Turov, V.V. (1999) Structure of hydrogen bonds and H-1 NMR spectra of water at the interface of oxides. Langmuir, 15(19), 6405-6415 https://doi.org/10.1021/la9809372
  10. Hartmeyer, G., Marichal, C., Lebeau, B., Rigolet, S., Caullet, P., and Hernandez, J. (2007) Speciation of silanol groups in precipitated silica nanoparticles by H-1 MAS NMR spectroscopy. Journal of Physical Chemistry C, 111(26), 9066-9071 https://doi.org/10.1021/jp071490l
  11. Lee, S.K. (2005) Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics. Geochimica Et Cosmochimica Acta, 69(14), 3695-3710 https://doi.org/10.1016/j.gca.2005.03.011
  12. Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., and Grimmer, A.R. (1980) Structural studies of silicates by solid-state high-resolution Si-29 NMR. Journal of the American Chemical Society, 102(15), 4889-4893 https://doi.org/10.1021/ja00535a008
  13. Liu, C.H.C. and Maciel, G.E. (1996) The fumed silica surface: A study by NMR. Journal of the American Chemical Society, 118(21), 5103-5119 https://doi.org/10.1021/ja954120w
  14. Lundqvist, M., Sethson, I., and Jonsson, B.H. (2004) Protein Adsorption onto Silica Nanoparticles: Conformational Changes Depend on the Particles' Curvature and the Protein Stability. Langmuir, 20(24), 10639-10647 https://doi.org/10.1021/la0484725
  15. Mauri, F., Pasquarello, A., Pfrommer, B.G., Yoon, Y.G., and Louie, S.G. (2000) Si-O-Si bond-angle distribution in vitreous silica from first-principles Si-29 NMR analysis. Physical Review B, 62(8), R4786-R4789 https://doi.org/10.1103/PhysRevB.62.R4786
  16. Navrotsky, A. (2004) Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proceedings of the National Academy of Sciences, 101(33), 12096-12101
  17. Pelmenschikov, A., Strandh, H., Pettersson, L.G.M., and Leszczynski, J. (2000) Lattice resistance to hydrolysis of Si-O-Si bonds of silicate minerals: Ab initio calculations of a single water attack onto the (001) and (111) beta-cristobalite surfaces. Journal of Physical Chemistry B, 104(24), 5779-5783 https://doi.org/10.1021/jp994097r
  18. Smith, J.V. and Blackwell, C.S. (1983). Nuclear magnetic- resonance of silica polymorphs. Nature 303 (5914): 223-225. https://doi.org/10.1038/303223a0
  19. Stesmans, A., Clemer, K., and Afanas'ev, V.V. (2005) Electron spin resonance probing of fundamental point defects in nm-sized silica particles. Journal of Non-Crystalline Solids, 351(21-23), 1764-1769 https://doi.org/10.1016/j.jnoncrysol.2005.04.011
  20. Trebosc, J., Wiench, J.W., Huh, S., Lin, V.S.Y., and Pruski, M. (2005) Solid-state NMR study of MCM- 41-type mesoporous silica nanoparticles. Journal of the American Chemical Society, 127(9), 3057-3068 https://doi.org/10.1021/ja043567e
  21. Uchino, T., Aboshi, A., Kohara, S., Ohishi, Y., Sakashita, M., and Aoki, K. (2004) Microscopic structure of nanometer-sized silica particles. Physical Review B, 69(15)
  22. Uchino, T. and Yamada, T. (2004) White light emission from transparent SiO2 glass prepared from nanometer-sized silica particles. Applied Physics Letters, 85(7), 1164-1166 https://doi.org/10.1063/1.1782263
  23. Ulrich, G.D. (1984) Flame synthesis of fine particles. Chemical & Engineering News, 62(32), 22-29 https://doi.org/10.1021/cen-v062n019.p022
  24. Vertegel, A.A., Siegel, R.W., and Dordick, J.S. (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 20(16), 6800-6807 https://doi.org/10.1021/la0497200
  25. Xue, X.Y. and Kanzaki, M. (2001) Ab initio calculation of the O-17 and H-1 NMR parameters for various OH groups: Implications to the speciation and dynamics of dissolved water in silicate glasses. Journal of Physical Chemistry B, 105(17), 3422-3434 https://doi.org/10.1021/jp0040751
  26. Young, G.H. (1957) Interaction of water vapor with silica surface. Journal of colloid science, 13, 67-85 https://doi.org/10.1016/0095-8522(58)90010-2
  27. Yuan, P., Wu, D.Q., He, H.P., and Lin, Z.Y. (2004) The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Applied Surface Science, 227(1-4), 30-39 https://doi.org/10.1016/j.apsusc.2003.10.031
  28. Zhang, H., Annich, G.M., Miskulin, J., Stankiewicz, K., Osterholzer, K., Merz, S.I., Bartlett, R.H., and Meyerhoff, M.E. (2003) Nitric oxide-releasing fumed silica particles: Synthesis, characterization, and biomedical application. J. Am. Chem. Soc., 125(17), 5015-5024 https://doi.org/10.1021/ja0291538
  29. Zhdanov, S.P., Kosheleva, L.S., and Titova, T.I. (1987) IR study of hydroxylated silica. Langmuir, 3(6), 960 -967 https://doi.org/10.1021/la00078a014