Abstract
This paper presents a human motion recognition method using both centroid shift and local basis images. The centroid shift based on 1st moment balance technique is applied to get the robust motion images against position or size changes, the extraction of local basis images based on independent component analysis(ICA) is also applied to find a set of statistically independent motion features, which is included in each motions. Especially, ICA of fixed-point(FP) algorithm based on Newton method is used for being quick to extract a local basis images of motions. The proposed method has been applied to the problem for recognizing the 160(1 person * 10 animals * 16 motions) sign language motion images of 240*215 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate) than the method using local eigen images and the method using local basis images without centroid shift respectively.
본 논문에서는 중심이동과 국부기저영상을 이용한 동작인식 기법을 제안하였다. 여기서 중심이동은 1차 모멘트 평형에 기반을 둔 것으로 위치나 크기 변화에 강건한 동작영상을 얻기 위함이고, 국부기저영상의 추출은 독립성분분석 기법에 기반을 둔 것으로 각 동작들마다에 포함된 통계적으로 독립인 동작특징들의 집합을 얻기 위함이다. 특히 국부기저영상을 빠르게 추출하기 위해 뉴우턴(Newton)법의 고정점 알고리즘에 기반을 둔 독립성분분석을 이용하였다. 제안된 기법을 240*215 픽셀의 160(1명*10종류*16동작)개 동물표현의 수화 동작영상을 대상으로 city-block, Euclidean, 그리고 negative angle의 척도들을 분류척도로 이용하여 실험하였다. 실험결과, 제안된 기법은 국부고유영상을 이용한 방법과 중심이동을 거치지 않는 국부기저영상을 이용하는 기법보다 각각 우수한 인식성능이 있음을 확인하였다.