Microbial Production and Characterization of Superparamagnetic Magnetite Nanoparticles by Shewanella sp. HN-41

  • Lee, Ji-Hoon (Department of Environmental Science and Engineering, and International Environmental Research Center, Gwangju Institute of Science and Technology) ;
  • Roh, Yul (Faculty of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • Hur, Hor-Gil (Department of Environmental Science and Engineering, and International Environmental Research Center, Gwangju Institute of Science and Technology)
  • Published : 2008.09.30

Abstract

A facultative dissimilatory metal-reducing bacterium, Shewanella sp. strain HN-41, was used to produce magnetite nanoparticles from a precursor, poorly crystalline iron-oxyhydroxide akaganeite ($\beta$-FeOOH), by reducing Fe(III). The diameter of the biogenic magnetite nanoparticles ranged from 26 nm to 38 nm, characterized by dynamic light scattering spectrophotometry. The magnetite nanoparticles consisted of mostly uniformly shaped spheres, which were identified by electron microscopy. The magnetometry revealed the superparamagnetic property of the magnetic nanoparticles. The atomic structure of the biogenic magnetite, which was determined by extended X-ray absorption fine structure spectroscopic analysis, showed similar atomic structural parameters, such as atomic distances and coordinations, to typical magnetite mineral.

Keywords

References

  1. Barber, D. J. and E. R. D. Scott. 2002. Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc. Natl. Acad. Sci. USA 99: 6556-6561
  2. Bazylinski, D. A., R. B. Frankel, and H. W. Jannasch. 1988. Anaerobic production of magnetite by a marine magnetotactic bacterium. Nature 334: 518-519 https://doi.org/10.1038/334518a0
  3. Bazylinski, D. A. and B. M. Moskowitz. 1997. Microbial biomineralization of magnetic iron minerals: Microbiology, magnetism and environmental significance, pp. 181-223. In J. F. Banfield and K. H. Nealson (eds.), Geomicrobiology: Interactions Between Microbes and Minerals. The Mineralogical Society of America, Washington, D.C
  4. Berger, P., N. B. Adelman, K. J. Beckman, D. J. Campbell, A. B. Ellis, and G. C. Lisensky. 1999. Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 76: 943-948 https://doi.org/10.1021/ed076p943
  5. Blackemore, R. P. 1975. Magnetotactic bacteria. Science 190: 377-379 https://doi.org/10.1126/science.170679
  6. Chang, I. S., H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediatorless microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177
  7. Choi, J.-W., B.-K. Oh, Y.-K. Kim, and J. Min. 2007. Nanotechnology in biodevices. J. Microbiol. Biotechnol. 17: 5-14
  8. Frankel, R. B., R. P. Blackemore, and R. S. Wolfe. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203: 1355-1356 https://doi.org/10.1126/science.203.4387.1355
  9. Fredrickson, J. K., J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onstott, N. W. Hinman, and S.-M. Li. 1998. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62: 3239-3257 https://doi.org/10.1016/S0016-7037(98)00243-9
  10. Friedmann, E. I., J. Wierzchos, C. Ascaso, and M. Winklhofer. 2001. Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin. Proc. Natl. Acad. Sci. USA 98: 2176-2181
  11. Hutten, A., D. Sudfeld, I. Ennen, G. Reiss, W. Hachmann, U. Heinzmann, et al. 2004. New magnetic nanoparticles for biotechnology. J. Biotechnol. 112: 47-63 https://doi.org/10.1016/j.jbiotec.2004.04.019
  12. Kim, B.-H., H.-J. Kim, M.-S. Hyun, and D.-H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127-131
  13. Lee, J.-H., Y. Roh, K.-W. Kim, and H.-G. Hur. 2007. Organic acid-dependent iron mineral formation by a newly isolated ironreducing bacterium, Shewanella sp. HN-41. Geomicrobiol. J. 24: 31-41 https://doi.org/10.1080/01490450601134291
  14. Lovley, D. R., J. F. Stolz, G. L. Nord, and E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory ironreducing microorganism. Nature 330: 252-254 https://doi.org/10.1038/330252a0
  15. Miller, T. L. and M. J. Wolin. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985-987
  16. Morrish, A. H. 2001. The Physical Principles of Magnetism. IEEE Press, New York
  17. Moskowitz, B. M., R. B. Frankel, D. A. Bazylinski, H. W. Jannasch, and D. R. Lovley. 1989. A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophys. Res. Lett. 16: 665-668 https://doi.org/10.1029/GL016i007p00665
  18. Myers, C. R. and K. H. Nealson. 1990. Iron mineralization by bacteria: Metabolic coupling of iron reduction to cell metabolism in Alteromonas putrefaciens MR-1, pp. 131-149. In R. B. Frankel and R. P. Blakemore (eds.), Iron Biominerals. Plenum Press, New York
  19. Newville, M. 2001. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 8: 322-324 https://doi.org/10.1107/S0909049500016964
  20. Newville, M., P. Livins, Y. Yacoby, E. A. Stern, and J. J. Rehr. 1993. Near-edge X-ray-absorption fine structure of Pb: A comparison of theory and experiment. Phys. Rev. B 47: 14126-14131 https://doi.org/10.1103/PhysRevB.47.14126
  21. Pankhurst, Q. A., J. Connolly, S. K. Jones, and J. Dobson. 2003. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36: R167-R181 https://doi.org/10.1088/0022-3727/36/13/201
  22. Ravel, B. 2001. ATOMS: Crystallography for the X-ray absorption spectroscopist. J. Synchrotron Rad. 8: 314-316 https://doi.org/10.1107/S090904950001493X
  23. Rehr, J. J. and R. C. Albers. 2000. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72: 621-654 https://doi.org/10.1103/RevModPhys.72.621
  24. Rehr, J. J., J. M. D. Leon, S. I. Zabinsky, and R. C. Albers. 1991. Theoretical X-ray absorption fine structure standards. J. Am. Chem. Soc. 113: 5135-5140 https://doi.org/10.1021/ja00014a001
  25. Schwertmann, U. and R. M. Cornell. 2000. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd Ed. Wiley- VCH, Weinheim
  26. Shinkai, M. 2002. Functional magnetic particles for medical application. J. Biosci. Bioeng. 94: 606-613 https://doi.org/10.1016/S1389-1723(02)80202-X
  27. Sparks, N. H. C., S. Mann, D. A. Bazylinski, D. R. Lovley, H. W. Jannasch, and R. B. Frankel. 1990. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. Earth Planet. Sci. Lett. 98: 14-22 https://doi.org/10.1016/0012-821X(90)90084-B
  28. Tiedje, J. M. 2002. Shewanella - the environmentally versatile genome. Nat. Biotechnol. 20: 1093-1094 https://doi.org/10.1038/nbt1102-1093
  29. Wechsler, B. A., D. H. Lindsley, and C. T. Prewitt. 1984. Crystal structure and cation distribution in titanomagnetites ($Fe_{3-x}Ti_xO_4$). Am. Mineral. 69: 754-770
  30. Weissa, B. P., S. S. Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili. 2004. Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth Planet. Sci. Lett. 224: 73-89 https://doi.org/10.1016/j.epsl.2004.04.024