References
- Barber, D. J. and E. R. D. Scott. 2002. Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc. Natl. Acad. Sci. USA 99: 6556-6561
- Bazylinski, D. A., R. B. Frankel, and H. W. Jannasch. 1988. Anaerobic production of magnetite by a marine magnetotactic bacterium. Nature 334: 518-519 https://doi.org/10.1038/334518a0
- Bazylinski, D. A. and B. M. Moskowitz. 1997. Microbial biomineralization of magnetic iron minerals: Microbiology, magnetism and environmental significance, pp. 181-223. In J. F. Banfield and K. H. Nealson (eds.), Geomicrobiology: Interactions Between Microbes and Minerals. The Mineralogical Society of America, Washington, D.C
- Berger, P., N. B. Adelman, K. J. Beckman, D. J. Campbell, A. B. Ellis, and G. C. Lisensky. 1999. Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 76: 943-948 https://doi.org/10.1021/ed076p943
- Blackemore, R. P. 1975. Magnetotactic bacteria. Science 190: 377-379 https://doi.org/10.1126/science.170679
- Chang, I. S., H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediatorless microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177
- Choi, J.-W., B.-K. Oh, Y.-K. Kim, and J. Min. 2007. Nanotechnology in biodevices. J. Microbiol. Biotechnol. 17: 5-14
- Frankel, R. B., R. P. Blackemore, and R. S. Wolfe. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203: 1355-1356 https://doi.org/10.1126/science.203.4387.1355
- Fredrickson, J. K., J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onstott, N. W. Hinman, and S.-M. Li. 1998. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62: 3239-3257 https://doi.org/10.1016/S0016-7037(98)00243-9
- Friedmann, E. I., J. Wierzchos, C. Ascaso, and M. Winklhofer. 2001. Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin. Proc. Natl. Acad. Sci. USA 98: 2176-2181
- Hutten, A., D. Sudfeld, I. Ennen, G. Reiss, W. Hachmann, U. Heinzmann, et al. 2004. New magnetic nanoparticles for biotechnology. J. Biotechnol. 112: 47-63 https://doi.org/10.1016/j.jbiotec.2004.04.019
- Kim, B.-H., H.-J. Kim, M.-S. Hyun, and D.-H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127-131
- Lee, J.-H., Y. Roh, K.-W. Kim, and H.-G. Hur. 2007. Organic acid-dependent iron mineral formation by a newly isolated ironreducing bacterium, Shewanella sp. HN-41. Geomicrobiol. J. 24: 31-41 https://doi.org/10.1080/01490450601134291
- Lovley, D. R., J. F. Stolz, G. L. Nord, and E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory ironreducing microorganism. Nature 330: 252-254 https://doi.org/10.1038/330252a0
- Miller, T. L. and M. J. Wolin. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985-987
- Morrish, A. H. 2001. The Physical Principles of Magnetism. IEEE Press, New York
- Moskowitz, B. M., R. B. Frankel, D. A. Bazylinski, H. W. Jannasch, and D. R. Lovley. 1989. A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophys. Res. Lett. 16: 665-668 https://doi.org/10.1029/GL016i007p00665
- Myers, C. R. and K. H. Nealson. 1990. Iron mineralization by bacteria: Metabolic coupling of iron reduction to cell metabolism in Alteromonas putrefaciens MR-1, pp. 131-149. In R. B. Frankel and R. P. Blakemore (eds.), Iron Biominerals. Plenum Press, New York
- Newville, M. 2001. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 8: 322-324 https://doi.org/10.1107/S0909049500016964
- Newville, M., P. Livins, Y. Yacoby, E. A. Stern, and J. J. Rehr. 1993. Near-edge X-ray-absorption fine structure of Pb: A comparison of theory and experiment. Phys. Rev. B 47: 14126-14131 https://doi.org/10.1103/PhysRevB.47.14126
- Pankhurst, Q. A., J. Connolly, S. K. Jones, and J. Dobson. 2003. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36: R167-R181 https://doi.org/10.1088/0022-3727/36/13/201
- Ravel, B. 2001. ATOMS: Crystallography for the X-ray absorption spectroscopist. J. Synchrotron Rad. 8: 314-316 https://doi.org/10.1107/S090904950001493X
- Rehr, J. J. and R. C. Albers. 2000. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72: 621-654 https://doi.org/10.1103/RevModPhys.72.621
- Rehr, J. J., J. M. D. Leon, S. I. Zabinsky, and R. C. Albers. 1991. Theoretical X-ray absorption fine structure standards. J. Am. Chem. Soc. 113: 5135-5140 https://doi.org/10.1021/ja00014a001
- Schwertmann, U. and R. M. Cornell. 2000. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd Ed. Wiley- VCH, Weinheim
- Shinkai, M. 2002. Functional magnetic particles for medical application. J. Biosci. Bioeng. 94: 606-613 https://doi.org/10.1016/S1389-1723(02)80202-X
- Sparks, N. H. C., S. Mann, D. A. Bazylinski, D. R. Lovley, H. W. Jannasch, and R. B. Frankel. 1990. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. Earth Planet. Sci. Lett. 98: 14-22 https://doi.org/10.1016/0012-821X(90)90084-B
- Tiedje, J. M. 2002. Shewanella - the environmentally versatile genome. Nat. Biotechnol. 20: 1093-1094 https://doi.org/10.1038/nbt1102-1093
-
Wechsler, B. A., D. H. Lindsley, and C. T. Prewitt. 1984. Crystal structure and cation distribution in titanomagnetites (
$Fe_{3-x}Ti_xO_4$ ). Am. Mineral. 69: 754-770 - Weissa, B. P., S. S. Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili. 2004. Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth Planet. Sci. Lett. 224: 73-89 https://doi.org/10.1016/j.epsl.2004.04.024