Purification, Characterization, and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum

  • 발행 : 2008.09.30

초록

A novel $\alpha$-amylase ($\alpha$-1,4-$\alpha$-D-glucan glucanohydrolase, E.C. 3.2.1.1), ScAmy43, was found in the culture medium of the phytopathogenic fungus Sclerotinia sclerotiorum grown on oats flour. Purified to homogeneity, ScAmy43 appeared as a 43 kDa monomeric enzyme, as estimated by SDS-PAGE and Superdex 75 gel filtration. The MALDI peptide mass fingerprint of ScAmy43 tryptic digest as well as internal sequence analyses indicate that the enzyme has an original primary structure when compared with other fungal a-amylases. However, the sequence of the 12 N-terminal residues is homologous with those of Aspergillus awamori and Aspergillus kawachii amylases, suggesting that the new enzyme belongs to the same GH13 glycosyl hydrolase family. Assayed with soluble starch as substrate, this enzyme displayed optimal activity at pH 4 and $55^{\circ}C$ with an apparent $K_m$ value of 1.66 mg/ml and $V_{max}$ of 0.1${\mu}mol$glucose $min^{-1}$ $ml^{-1}$. ScAmy43 activity was strongly inhibited by $Cu^{2+}$, $Mn^{2+}$, and $Ba^{2+}$, moderately by $Fe^{2+}$, and was only weakly affected by $Ca^{2+}$ addition. However, since EDTA and EGTA did not inhibit ScAmy43 activity, this enzyme is probably not a metalloprotein. DTT and $\beta$-mercaptoethanol strongly increased the enzyme activity. Starting with soluble starch as substrate, the end products were mainly maltotriose, suggesting for this enzyme an endo action.

키워드

참고문헌

  1. Abe, J. I., K. Nakajima, H. Nagano, S Hizukuri, and K. Obata. 1988. Properties of the raw-starch digesting amylase of Aspergillus sp. K-27: A synergistic action of glucoamylase and alpha-amylase. Carbohydr. Res. 175: 85-92 https://doi.org/10.1016/0008-6215(88)80158-7
  2. Abe, R., Y. Chiba, and T. Nakajima. 2002. Characterization of the functional module responsible for low temperature optimum of a rice ${\alpha}-amylase$ (Amy 3E). Biol. Bratislava 57: 197-202
  3. Abid, I., M. Gargouri, I. Smaali, F. Limam, T. Maugard, M. D. Legoy, and N. Marzouki. 2006. Application of xylanolytic enzymes in $alkyl-{\beta}-xyloside$ synthesis and purification of ${\beta}- xylosidase$ from Sclerotinia sclerotiorum. Int. J. Pure Appl. Chem. 1: 83-90
  4. Aguilar, G., J. Morlon-Guyot, B. Trejo-Aguilar, and J. P. Guyot. 2000. Purification and characterization of an extracellular amylase produced by Lactobacillus manihotivorans LMG 18010, an amylolytic lactic acid bacterium. Enzyme Microb. Technol. 27: 406-413 https://doi.org/10.1016/S0141-0229(00)00230-1
  5. Alghisi, P. and F. Favaron. 1995. Pectin-degrading enzymes and plant-parasite interactions. Eur. J. Plant Pathol. 101: 365-375 https://doi.org/10.1007/BF01874850
  6. Ben Ali, M., M. Mezghani, and S. Bejar. 1999. A thermostable ${\alpha}-amylase$ producing maltohexaose from a new isolated Bacillus sp. US100: Study of activity and molecular cloning of the corresponding gene. Enzyme Microb. Technol. 24: 584-589 https://doi.org/10.1016/S0141-0229(98)00165-3
  7. Blum, H., H. Beier, and H. J. Gross. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93-99 https://doi.org/10.1002/elps.1150080203
  8. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  9. Dworzanski, J. P. and A. P. Snyder. 2005. Classification and identification of bacteria using mass spectrometry-based proteomics. Expert Rev. Proteomics 2: 863-878 https://doi.org/10.1586/14789450.2.6.863
  10. Ellouze, O., M. Mejri, I. Smaali, F. Limam, and M. N. Marzouki. 2007. Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus. J. Food Biochem. 31: 96-107 https://doi.org/10.1111/j.1745-4514.2007.00101.x
  11. Fogarty, W. M. and C. T. Kelly. 1980. Microbial enzymes and bioconversion, pp. 115-170. In A. H. Ros (ed.), Economic Microbiology, Vol. 5. Academic Press, London
  12. Henrissat, B. 1991. A classification of glycohydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316 https://doi.org/10.1042/bj2800309
  13. Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada. 1998. Alkaline detergent enzymes from alkaliphiles. Enzymatic properties, genetics and structure. Extremophiles 2: 185-190 https://doi.org/10.1007/s007920050059
  14. Itoh, R., C. Saint-Marc, S. Chaignepain, R. Katahira, J. M. Schmitter, and B. Daignan-Fornier. 2003. The yeast ISN1 (YOR155c) gene encodes a new type of IMP-specific 5'- nucleotidase. BMC Biochem. 4: 4-11 https://doi.org/10.1186/1471-2091-4-4
  15. Kanno, M. 1986. Bacillus acidocaldarius amylase that is highly stable to heat under acidic conditions. Agric. Biol. Chem. 50: 23-31 https://doi.org/10.1271/bbb1961.50.23
  16. Khoo, S. L., A. A. Amirul, M. Kamaruzaman, N. Nazalan, and M. N. Azizan. 1994. Purification and characterization of alpha-amylase from Aspergillus flavus. Folia Microbiol. 39: 392-398 https://doi.org/10.1007/BF02814445
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  18. Liu, H. L., W. J. Chen, and S. N. Chou. 2003. Mechanisms of aggregation of alpha and beta amylase in aqueous dispersions. Colloids Surf. B Biointerfaces 28: 215-225 https://doi.org/10.1016/S0927-7765(02)00142-X
  19. Malhotra, R., S. M. Noorvez, and T. Satyanarayana. 2000. Production and partial characterization of thermostable and calcium independent alpha amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378-384 https://doi.org/10.1046/j.1472-765x.2000.00830.x
  20. Mandels, M. and J. Webber. 1969. The production of cellulases. J. Adv. Chem. Ser. 95: 391-412 https://doi.org/10.1021/ba-1969-0095.ch023
  21. Martel, M. B., C. Herve du Penhoat, R. Letoublon, and M. Fèvre. 2002. Purification and characterization of a glucoamylase secreted by the plant pathogen Sclerotinia sclerotiorum. Can. J. Microbiol. 48: 212-218 https://doi.org/10.1139/w02-011
  22. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  23. Mishra, R. S. and R. Maheshwari. 1996. Amylases of the thermophilic fungus Thermomyces lanuginosus: Their purification, properties, action on starch and response to heat. J. Biosci. 21: 653-672 https://doi.org/10.1007/BF02703143
  24. Niehaus, F., C. Bertoldo, M. Kähler, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711-729 https://doi.org/10.1007/s002530051456
  25. Noman, A. S. M., M. A. Hoque, P. K. Sen, and M. R. Karim. 2006. Purification and some properties of ${\alpha}-amylase$ from postharvest Pachyrhizus erosus L. tuber. Food Chem. 99: 444-449 https://doi.org/10.1016/j.foodchem.2005.07.056
  26. Okolo, B. N., L. I. Ezeogu, and C. O. Ebisike. 1996. Raw starch digesting amylase from Thermoactinomyces thalpophilus F13. World J. Microbiol. Biotechnol. 12: 637-638 https://doi.org/10.1007/BF00327728
  27. Pandey, A., P. Nigam, C. R. Soccol, V. Y. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases (review). Biotechnol. Appl. Biochem. 31: 135-152 https://doi.org/10.1042/BA19990073
  28. Priest, F. G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711-753
  29. Purdy, L. H. 1979. Sclerotinia sclerotiorum: History, diseases and symptomology, host range, geographic distribution and impact. Phytopathology 69: 875-880 https://doi.org/10.1094/Phyto-69-875
  30. Riou, C., G. Freyssinet, and M. Fevre. 1991. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 57: 1478-1484
  31. Robyt, J. F. and R. J. Ackerman. 1971. Isolation, purification and characterization of a maltotetraose-producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys. 145: 105-114 https://doi.org/10.1016/0003-9861(71)90015-4
  32. Ronaszeki, G., Q. D. Nguyen, J. M. Rezessy-Szabo, A. Hoschke, and M. K. Bhat. 2000. Screening the strains of the thermophilic fungus Thermomyces lanuginosus for amylolytic activities. Acta Alimentaria 29: 71-79
  33. Satoh, E., T. Uchimura, T. Kudo, and K. Komagata. 1997. Purification, characterization and nucleotide sequence of an intracellular maltotriose-producing amylase from Streptococcus bovis 148. Appl. Environ. Microbiol. 63: 4941-4944
  34. Scriban, R. 1993. Biotechnologie, pp 90-717. 4th Ed. Techniques et Documentations, Lavoisier
  35. Shevchenko, A., M. Wilm, O. Vom, and M. Mann. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858 https://doi.org/10.1021/ac950914h
  36. Sivaramakrishnan, S., D. Gangadharan, K. M. Nampoothiri, C. R. Soccol, and A. Pandey. 2006. ${\alpha}-Amylases$ from microbial sources. An overview on recent developments. Food Technol. Biotechnol. 44: 173-184
  37. Smaali, M. I., M. Gargouri, F. Limam, S. Fattouch, T. Maugard, M. D. Legoy, and N. Marzouki. 2003. Production, purification and biochemical characterization of two ${\beta}-glucosidases$ from Sclerotinia sclerotiorum. App. Biochem. Biotechnol. 111: 29-40 https://doi.org/10.1385/ABAB:111:1:29
  38. Steyn, A. J. C. and I. S. Pretorius. 1995. Characterization of a novel ${\alpha}-amylase$ from Lipomyces kononenkoae and expression of its gene (LKAI) in Saccharomyces cerevisiae. Curr. Genet. 28: 526-533 https://doi.org/10.1007/BF00518165
  39. Takasaki, Y., M. Kitajima, T. Tsuruta, M. Nonoguchi, S. Hayashi, and K. Imada. 1991. Maltotriose-producing amylase from Microbacterium imperiale. Agric. Biol. Chem. 55: 687-692 https://doi.org/10.1271/bbb1961.55.687
  40. Takasaki, Y. 1985. An amylase producing maltotriose from Bacillus subtilis. Agric. Biol. Chem. 49: 1091-1097 https://doi.org/10.1271/bbb1961.49.1091
  41. Tsvetkov, V. T. and E. I. Emanuilova. 1989. Purification and properties of heat stable amylase from Bacillus brevis. Appl. Environ. Microbiol. 31: 246-248
  42. Yang, C. H. and W. H. Liu. 2004. Purification and properties of maltotriose-producing ${\alpha}-amylase$ from Thermobifida fusca. Enzyme Microb. Technol. 35: 254-260 https://doi.org/10.1016/j.enzmictec.2004.05.004
  43. Yoshigi, N., T. Chikano, and M. Kamimura. 1985. Characterization of maltopentaose-producing bacterium and its cultural conditions. Agric. Biological Chem. 49: 2379-2384 https://doi.org/10.1271/bbb1961.49.2379