Bifunctional Recombinant Fusion Enzyme Between Maltooligosyltrehalose Synthase and Maltooligosyltrehalose Trehalohydrolase of Thermophilic Microorganism Metallosphaera hakonensis

  • Seo, Ju-Seok (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • An, Ju-Hee (Department of Food and Nutrition, Seowon University) ;
  • Cheong, Jong-Joo (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Choi, Yang-Do (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim, Chung-Ho (Department of Food and Nutrition, Seowon University)
  • Published : 2008.09.30

Abstract

MhMTS and MhMTH are trehalose ($\alpha$-D-glucopyranosyl-[1,1]-$\alpha$-D-glucopyranose) biosynthesis genes of the thermophilic microorganism Metallosphaera hakonensis, and encode a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively. In this study, the two genes were fused in-frame in a recombinant DNA, and expressed in Escherichia coli to produce a bifunctional fusion enzyme, MhMTSH. Similar to the two-step reactions with MhMTS and MhMTH, the fusion enzyme catalyzed the sequential reactions on maltopentaose, maltotriosyltrehalose formation, and following hydrolysis, producing trehalose and maltotriose. Optimum conditions for the fusion enzyme-catalyzed trehalose synthesis were around $70^{\circ}C$ and pH 5.0-6.0. The MhMTSH fusion enzyme exhibited a high degree of thermostability, retaining 80% of the activity when pre-incubated at $70^{\circ}C$ for 48 h. The stability was gradually abolished by incubating the fusion enzyme at above $80^{\circ}C$. The MhMTSH fusion enzyme was active on various sizes of maltooligosaccharides, extending its substrate specificity to soluble starch, the most abundant natural source of trehalose production.

Keywords

References

  1. Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang, and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279
  2. Eastmond, P. J. and I. J. Graham. 2003. Trehalose metabolism: A regulatory role for trehalose-6-phosphate. Curr. Opin. Plant Biol. 6: 231-235 https://doi.org/10.1016/S1369-5266(03)00037-2
  3. Elbein, A. 1974. The metabolism of ${\alpha},{\alpha}-trehalose$. Adv. Carbohydr. Chem. Biochem. 30: 227-256 https://doi.org/10.1016/S0065-2318(08)60266-8
  4. Eleutherio, E. C. A., P. S. Araujo, and A. D. Panek. 1993. Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30: 591-596 https://doi.org/10.1006/cryo.1993.1061
  5. Giaever, H. M., O. B. Styrvoid, I. Kaasen, and A. R. Strom. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170: 2841-2849 https://doi.org/10.1128/jb.170.6.2841-2849.1988
  6. Kim, C. H. 2000. Construction of bifunctional fusion enzyme between maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase of Sulfolobus acidocaldarius and overexpression in E. coli. Agric. Chem. Biotechnol. 43: 240-245
  7. Kim, C. H. and Y. D. Choi. 1989. Identification of soybean glycinin precursor in vivo. Kor. J. Bot. 32: 51-65
  8. Kim, Y. H., T. K. Kwon, S. Park, H. S. Seo, J.-J. Cheong, C. H. Kim, J.-K. Kim, J. S. Lee, and Y. D. Choi. 2000. Trehalose synthesis by sequential reactions of recombinant maltooligosyltrehalose syntase and maltooligosyltrehalose trehalohydrolase from Brevibacterium helvolum. Appl. Environ. Microbiol. 66: 4620-4624 https://doi.org/10.1128/AEM.66.11.4620-4624.2000
  9. Kobayash, K., M. Kato, Y. Miura, M. Kettoku, T. Komeda, and A. Iwamatsu. 1996. Gene cloning and expression of new trehalose-producing enzyme from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci. Biotech. Biochem. 60: 1882-1885 https://doi.org/10.1271/bbb.60.1882
  10. Lama, L., B. Nicolaus, A. Trincone, P. Morzillo, M. De Rosa, and A. Gambacorta. 1990. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol. Lett. 12: 431-432 https://doi.org/10.1007/BF01024398
  11. Maruta, K., H. Mitsuzumi, T. Nakada, M. Kubota, H. Chaen, S. Fukuda, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291: 177-181 https://doi.org/10.1016/S0304-4165(96)00082-7
  12. Maruta, K., K. Hattori, T. Nakada, M. Kubota, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim. Biophys. Acta 1289: 10-13 https://doi.org/10.1016/0304-4165(95)00139-5
  13. Maruta, K., K. Hattori, T. Nakada, M. Kubota, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci. Biotech. Biochem. 60: 717-720 https://doi.org/10.1271/bbb.60.717
  14. Mukai, K., A. Tabuchi, T. Nakada, T. Shibuya, H. Chaen, S. Fukuda, M. Kurimoto, and Y. Tsujisaka. 1997. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch 1: 26-30
  15. Nakada, T., S. Ikegami, H. Chaen, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotech. Biochem. 60: 263-266 https://doi.org/10.1271/bbb.60.263
  16. Nakada, T., S. Ikegami, H. Chaen, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotech. Biochem. 60: 267-270 https://doi.org/10.1271/bbb.60.267
  17. Paik, S.-K., H.-S. Yun, H.-Y. Sohn, and I. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
  18. Park, J.-E., K.-H. Lee, and D. Jahng. 2002. Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells. J. Microbiol. Biotechnol. 12: 349-353
  19. Seo, H. S., Y. J. Koo, J. Y. Lim, J. T. Song, C. H. Kim, J. K. Kim, J. S. Lee, and Y. D. Choi. 2000. Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl. Environ. Microbiol. 66: 2484-2490 https://doi.org/10.1128/AEM.66.6.2484-2490.2000
  20. Seo, J.-S., J. H. An, M.-Y. Baik, C. S. Park, J.-J. Cheong, T. W. Moon, K. H. Park, Y. D. Choi, and C. H. Kim. 2007. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J. Microbiol. Biotechnol. 17: 123-129
  21. Streeter, J. G. and A. Bhagwat. 1999. Biosynthesis of trehalose from maltooligosaccharides in Rhizobia. Can. J. Microbiol. 45: 716-721 https://doi.org/10.1139/cjm-45-8-716
  22. Van Laere, A. 1989. Trehalose, reserve and/or stress metabolite? FEMS Microbiol. Rev. 63: 201-210 https://doi.org/10.1016/0168-6445(89)90031-4