Morphogenetic Behavior of Tropical Marine Yeast Yarrowia lipolytica in Response to Hydrophobic Substrates

  • Published : 2008.09.30

Abstract

The morphogenetic behavior of a tropical marine Yarrowia lipolytica strain on hydrophobic substrates was studied. Media containing coconut oil or palm kernel oil (rich in lauric and myristic acids) prepared in distilled water or seawater at a neutral pH supported 95% of the cells to undergo a transition from the yeast form to the mycelium form. With potassium laurate, 51 % of the cells were in the mycelium form, whereas with myristate, 32% were in the mycelium form. However, combinations of these two fatty acids in proportions that are present in coconut oil or palm kernel oil enhanced the mycelium formation to 65%. The culture also produced extracellular lipases during the morphogenetic change. The yeast cells were found to attach to the large droplets of the hydrophobic substrates during the transition, while the mycelia were associated with the aqueous phase. The alkane-grown yeast partitioned more efficiently in the hydrophobic phases when compared with the coconut oil-grown mycelia. A fatty acid analysis of the mycelial form revealed the presence of lauric acid in addition to the long-chain saturated and unsaturated fatty acids observed in the yeast form. The mycelia underwent a rapid transition to the yeast form with n-dodecane, a medium-chain aliphatic hydrocarbon. Thus, the fungus displayed a differential behavior towards the two types of saturated hydrophobic substrates.

Keywords

References

  1. Andreishcheva, E. N., E. P. Isakova, N. N. Sidorov, N. B. Abramova, N. A. Ushakova, G. L. Shaposhnikov, M. I. M. Soares, and R. A. Zvyagilskaya. 1999. Adaptation of salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry 64: 1061-1067
  2. Butinar, S. S., I. Spencer-Martins, A. Oren, and N. Gunde- Cimerman. 2005. Yeast diversity in hypersaline habitats. FEMS Microbiol. Lett. 244: 229-234 https://doi.org/10.1016/j.femsle.2005.01.043
  3. Crolla, A. and K. J. Kennedy. 2001. Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. J. Biotechnol. 89: 27-40 https://doi.org/10.1016/S0168-1656(01)00278-4
  4. Dominguez, A., E. Ferminan, and C. Gaillardin. 2000. Yarrowia lipolytica: An organism amenable to genetic manipulation as a model for analyzing dimorphism in fungi. Contrib. Microbiol. 5: 151-172 https://doi.org/10.1159/000060349
  5. Fickers, P., P. H. Benetti, Y. Wache, A. Marty, S. Mauersberger, M. S. Smit, and J. M. Nicaud. 2005. Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 5: 527-543 https://doi.org/10.1016/j.femsyr.2004.09.004
  6. Fickers, P., F. Fudalej, J. M. Nicaud, J. Destain, and P. Thonart. 2005. Selection of new over-producing derivatives for the improvement of extracellular lipase production by the nonconventional yeast Yarrowia lipolytica. J. Biotechnol. 115: 379-386 https://doi.org/10.1016/j.jbiotec.2004.09.014
  7. Gurr, M. I., J. L. Harwood, and K. N. Frayn. 2002. Lipids as energy stores. In: Lipid biochemistry: An Introduction, pp. 93-126. Blackwell Science, Oxford, U.K
  8. Gutierrez, J. R. and L. E. Erickson. 1977. Hydrocarbon uptake in hydrocarbon fermentation. Biotechnol. Bioeng. 19: 1331-1349 https://doi.org/10.1002/bit.260190907
  9. Hurtado, C. A. R., J. M. Beckerich, C. Gaillardin, and R. A. Rachubinski. 2000. A Rac homolog is required for induction of hyphal growth in the dimorphic yeast Yarrowia lipolytica. J. Bacteriol. 182: 2376-2386 https://doi.org/10.1128/JB.182.9.2376-2386.2000
  10. Kawasse, F. M., P. F. Amaral, M. H. M. Rocha-Leão, E. C. Amaral, A. L. Ferreira, and M. A. Z. Coelho. 2003. Morphological analysis of Yarrowia lipolytica under stress conditions through image processing. Bioprocess Biosyst. Eng. 25: 371-375 https://doi.org/10.1007/s00449-003-0319-z
  11. Khale-Kumar, A. and M. V. Deshpande. 1993. Possible involvement of cyclic adenosine 3',5'-monophosphate in the regulation of NADP-/NAD-glutamate dehydrogenase ratio and in yeast-mycelium transition of Benjaminiella poitrasii. J. Bacteriol. 175: 6052-6055 https://doi.org/10.1128/jb.175.18.6052-6055.1993
  12. Kim, J., S. A. Cheon, S. Park, Y. Song, and J. Y. Kim. 2000. Serum-induced hyphae formation in the dimorphic yeast Yarrowia lipolytica. FEMS Microbiol. Lett. 190: 9-12 https://doi.org/10.1111/j.1574-6968.2000.tb09254.x
  13. Kim, J. T., S. G. Kang, J. H. Woo, J. H. Lee, B. C. Jeong, and S. J. Kim. 2007. Screening and its potential application of lipolytic activity from a marine environment: Characterization of a novel esterase from Yarrowia lipolytica CL180. Appl. Microbiol. Biotechnol. 74: 820-828 https://doi.org/10.1007/s00253-006-0727-5
  14. Lee, G. H., J. H. Bae, M. J. Suh, I. H. Kim, C. T. Hou, and H. R. Kim. 2007. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y- 2178. J. Microbiol. Biotechnol. 17: 1054-1057
  15. Mauersberger, S., H. J. Wang, C. Gaillardin, G. A. Barth, and J. M. Nicaud. 2001. Insertional mutagenesis in the n-alkane assimilating yeast Yarrowia lipolytica: Generation of tagged mutations in genes involved in hydrophobic substrate utilization. J. Bacteriol. 183: 5102-5109 https://doi.org/10.1128/JB.183.17.5102-5109.2001
  16. McIntyre, M., J. Breum, J. Arnau, and J. Nielsen. 2002. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Appl. Microbiol. Biotechnol. 58: 495-502 https://doi.org/10.1007/s00253-001-0916-1
  17. Mlícková, K., E. Roux, K. Athenstaedt, S. d'Andrea, G. Daum, T. Chardot, and J. M. Nicaud. 2004. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 70: 3918-3924 https://doi.org/10.1128/AEM.70.7.3918-3924.2004
  18. Montet, D., R. Ratomahenina, P. Galzy, M. Pina, and J. Graille. 1985. A study of the influence of the growth media on the fatty acid composition in Candida lipolytica Diddens and Lodder. Biotechnol. Lett. 7: 733-736 https://doi.org/10.1007/BF01032285
  19. Moss, C. W., T. Shinoda, and J. W. Samuels. 1982. Determination of cellular fatty acid compositions of various yeasts by gasliquid chromatography. J. Clin. Microbiol. 16: 1073-1079
  20. Novotony, C., L. Dolezalova, and J. Lieblova. 1994. Dimorphic growth and lipase production in lipolytic yeasts - Yarrowia lipolytica, Candida rugosa, Torulopsis erbinii, Candida curvata, and Candida guilliermondii. Folia Microbiol. 39: 71-73 https://doi.org/10.1007/BF02814534
  21. Ofek, I., E. Whitnack, and E. H. Beachey. 1983. Hydrophobic interactions of group A streptococci with hexadecane droplets. J. Bacteriol. 154: 139-145
  22. Oswal, N., P. M. Sarma, S. S. Zinjarde, and A. Pant. 2002. Palm oil mill effluent treatment by a tropical marine yeast. Bioresour. Technol. 85: 35-37 https://doi.org/10.1016/S0960-8524(02)00063-9
  23. Ota, Y., S. Oikawa, Y. Morimoto, and Y. Minoda. 1984. Nutritional factors causing mycelial development of Saccharomycopsis lipolytica. Agric. Biol. Chem. 48: 1933-1940 https://doi.org/10.1271/bbb1961.48.1933
  24. Papanikolaou, S., L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc. 2002. Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92: 737-744 https://doi.org/10.1046/j.1365-2672.2002.01577.x
  25. Papanikolaou, S., I. Chevalot, M. Komaitis, I. Marc, and G. Aggelis. 2002. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl. Microbiol. Biotechnol. 58: 308-312 https://doi.org/10.1007/s00253-001-0897-0
  26. Papanikolaou, S., L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc. 2003. Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr. Microbiol. 46: 124-130 https://doi.org/10.1007/s00284-002-3833-3
  27. Papanikolaou, S. and G. Aggelis. 2003 Selective uptake of fatty acids by yeast Yarrowia lipolytica. Eur. J. Lipid Sci. Technol. 105: 651-655 https://doi.org/10.1002/ejlt.200300858
  28. Perez-Campo, F. M. and A. Dominguez. 2001. Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr. Microbiol. 43: 429-433 https://doi.org/10.1007/s002840010333
  29. Pignede, G., H. J. Wang, F. Fudalej, M. Seman, C. Gaillardin, and J. M. Nicaud. 2000. Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl. Environ. Microbiol. 66: 3283-3289 https://doi.org/10.1128/AEM.66.8.3283-3289.2000
  30. Rodriguez, C. and A. Dominguez. 1984. The growth characteristics of Saccharomycopsis lipolytica: Morphology and induction of mycelium formation. Can. J. Microbiol. 30: 605-612 https://doi.org/10.1139/m84-090
  31. Ruiz-Herrera, J. and R. Sentandreu. 2002. Different effectors of dimorphism in Yarrowia lipolytica. Arch. Microbiol. 178: 477-483 https://doi.org/10.1007/s00203-002-0478-3
  32. Tan, K. H. and C. O. Gill. 1985. Batch growth of Saccharomycopsis lipolytica on animal fats. Appl. Microbiol. Biotechnol. 21: 292-298
  33. Winkler, U. K. and M. Stuckmann. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138: 663-670
  34. Zinjarde, S. S., M. V. Deshpande, and A. Pant. 1998. Dimorphic transition in Yarrowia lipolytica isolated from oil polluted seawater. Mycol. Res. 102: 553-558 https://doi.org/10.1017/S0953756297005418