Specific Detection of Xanthomonas oryzae pv. oryzicola in Infected Rice Plant by Use of PCR Assay Targeting a Membrane Fusion Protein Gene

  • Kang, Man-Jung (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Shim, Jae-Kyung (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Cho, Min-Seok (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Seol, Young-Joo (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Hahn, Jang-Ho (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Hwang, Duk-Ju (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Park, Dong-Suk (National Institute of Agricultural Biotechnology, Rural Development Administration)
  • 발행 : 2008.09.30

초록

Successful control of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak, requires a specific and reliable diagnostic tool. A pathovar-specific PCR assay was developed for the rapid and accurate detection ofthe plant pathogenic bacterium Xanthomonas oryzae pv. oryzicola in diseased plant. Based on differences in a membrane fusion protein gene of Xanthomonas oryzae pv. oryzicola and other microorganisms, which was generated from NCBI (http://www.ncbi.nlm.nih.gov/) and CMR (http://cmr.tigr.org/) BLAST searches, one pair of pathovar-specific primers, XOCMF/XOCMR, was synthesized. Primers XOCMF and XOCMR from a membrane fusion protein gene were used to amplity a 488-bp DNA fragment. The PCR product was only produced from 4 isolates of Xanthomonas oryzae pv. oryzicola among 37 isolates of other pathovars and species of Xanthomonas, Pectobacterium, Pseudomonas, Burkholderia, Escherichia coli, and Fusarium oxysporum f.sp. dianthi. The results suggested that the assay detected the pathogen more rapidly and accurately than standard isolation methods.

키워드

참고문헌

  1. Alvarez, A. M. and K. Lou. 1985. Rapid identification of Xanthomonas campestris pv. campestris by ELISA. Plant Dis. 69: 1082-1086 https://doi.org/10.1094/PD-69-1082
  2. Alvarez, A. M. 2004. Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu. Rev. Phytopathol. 42: 339-366 https://doi.org/10.1146/annurev.phyto.42.040803.140329
  3. Atlas, R. M. 2004. Handbook of Microbiological Media, 3rd Ed. CRC Press
  4. Benedict, A. A., A. M. Alvarez, J. Berstecky, W. Imanaka, C. Y. Mizumoto, L. W. Pollard, T. W. Mew, and C. F. Gonzalez. 1989. Pathovar-specific monoclonal antibodies for Xanthomonas campestris pv. oryzae and for Xanthomonas oryzae pv. oryzicola. Phytopathology 79: 322-326 https://doi.org/10.1094/Phyto-79-322
  5. Davies, R. L., B. J. Paster, and F. E. Dewhirst. 1996. Phylogenetic relationships and diversity within the Pasteurella haemolytica complex based on 16S rRNA sequence comparison and outer membrane protein and lipopolysaccharide analysis. Int. J. Syst. Bacteriol. 46: 736-744 https://doi.org/10.1099/00207713-46-3-736
  6. Ercolini, D., F. Russo, G. Blaiotta, O. Pepe, G. Mauriello, and F. Villani. 2007. Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida from meat by use of a multiplex PCR assay targeting the carA gene. Appl. Environ. Microbiol. 73: 2354-2359 https://doi.org/10.1128/AEM.02603-06
  7. Gonzalez, C. F. 1989. Pathovar-specific monoclonal antibodies for Xanthomonas campestris pv. oryzae and for Xanthomonas oryzae pv. oryzicola. Phytopathology 79: 322-326 https://doi.org/10.1094/Phyto-79-322
  8. Kang, S. E., Y. S. Nam, and K. W. Hong. 2007. Rapid detection of Enterobacter sakazakii using TaqMan real-time PCR assay. J. Microbiol. Biotechnol. 17: 516-519
  9. Kaur, R., A. Sharma, S. Majumdar, N. K. Ganguly, and A. Chakraborti. 2003. Outer-membrane-protein subtypes of Haemophilus influenzae isolates from North India. J. Med. Microbiol. 52: 693-696 https://doi.org/10.1099/jmm.0.05080-0
  10. Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res. 8: 4321-4325 https://doi.org/10.1093/nar/8.19.4321
  11. Rantsioua, K., V. Alessandriaa, R. Ursob, P. Dolcia, and L. Cocolina. 2008. Detection, quantification and vitality of Listeria monocytogenes in food as determined by quantitative PCR. Int. J. Food Microbiol. 121: 99-105 https://doi.org/10.1016/j.ijfoodmicro.2007.11.006
  12. Robene-Soustrade, I., P. Laurent, L. Gagnevin, E. Jouen, and O. Pruvost. 2006. Specific detection of Xanthomonas axonopodis pv. dieffenbachiae in Anthurium (Anthurium andreanum) tissues by nested PCR. Appl. Environ. Microbiol. 72: 1072-1078 https://doi.org/10.1128/AEM.72.2.1072-1078.2006
  13. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  14. Sakthivel, N., C. N. Mortensen, and S. B. Mathur. 2001. Detection of Xanthomonas oryzae pv. oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques. Appl. Microbiol. Biotechnol. 56: 435-441 https://doi.org/10.1007/s002530100641
  15. Wang, G. J., X. D. Zhu, Y. L. Chen, and G. L. Xie. 1993. A rapid ELISA method for the identification of rice seeds infected by Xanthomonas oryzae pv. oryzicola. Jiangsu J. Agric. Sci. 9: 36-39
  16. Xie, G. L. and T. W. Mew. 1998. A leaf inoculation method for detection of Xanthomonas oryzae pv. oryzicola from rice seed. Plant Dis. 82: 1007-1011 https://doi.org/10.1094/PDIS.1998.82.9.1007
  17. Yang, Y. G., M. K. Song, S. J. Park, and S. W. Kim. 2007. Direct detection of Shigella flexneri and Salmonella typhimurium in human feces by real-time PCR. J. Microbiol. Biotechnol. 17: 1616-1621