Control of Tylosin Biosynthesis in Streptomyces fradiae

  • Published : 2008.09.30

Abstract

Tylosin biosynthesis is controlled in cascade fashion by multiple transcriptional regulators, acting positively or negatively, in conjunction with a signalling ligand that acts as a classical inducer. The roles of regulatory gene products have been characterized by a combination of gene expression analysis and fermentation studies, using engineered strains of S. fradiae in which specific genes were inactivated or overexpressed. Among various novel features of the regulatory model, involvement of the signalling ligand is not essential for tylosin biosynthesis.

Keywords

References

  1. Arisawa, A., N. Kawamura, T. Narita, I. Kojima, K. Okamura, H. Tsunekawa, T. Yoshioka, and R. Okamoto. 1996. Direct fermentative production of acyltylosins by genetically-engineered strains of Streptomyces fradiae. J. Antibiot. 49: 349-354 https://doi.org/10.7164/antibiotics.49.349
  2. Bate, N., A. R. Butler, A. R. Gandecha, and E. Cundliffe. 1999. Multiple regulatory genes in the tylosin-biosynthetic cluster of Streptomyces fradiae. Chem. Biol. 6: 617-624 https://doi.org/10.1016/S1074-5521(99)80113-6
  3. Bate, N., G. Stratigopoulos, and E. Cundliffe. 2002. Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis. Mol. Microbiol. 43: 449-458 https://doi.org/10.1046/j.1365-2958.2002.02756.x
  4. Bate, N., D. R. D. Bignell, and E. Cundliffe. 2006. Regulation of tylosin biosynthesis involving 'SARP-helper' activity. Mol. Microbiol. 62: 148-156 https://doi.org/10.1111/j.1365-2958.2006.05338.x
  5. Bibb, M. J. 2005. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8: 208-215 https://doi.org/10.1016/j.mib.2005.02.016
  6. Bignell, D. R. D., N. Bate, and E. Cundliffe. 2007. Regulation of tylosin production: Role of a TylP-interactive ligand. Mol. Microbiol. 63: 838-847
  7. Butler, A. R., A. R. Gandecha, and E. Cundliffe. 2001. Influence of ancillary genes, encoding aspects of methionine metabolism, on tylosin biosynthesis in Streptomyces fradiae. J. Antibiot. 54: 642-649 https://doi.org/10.7164/antibiotics.54.642
  8. Cundliffe, E. 2005. Antibiotic production by actinomycetes: The Janus faces of regulation. J. Ind. Microbiol. Biotechnol. 33: 500-506 https://doi.org/10.1007/s10295-006-0083-6
  9. Cundliffe, E., N. Bate, A. Butler, S. Fish, A. Gandecha, and L. Merson-Davies. 2001. The tylosin-biosynthetic genes of Streptomyces fradiae. Antonie. van Leeuwenhoek 79: 229-234 https://doi.org/10.1023/A:1012065300116
  10. Fernandez-Moreno, M. A., J. L. Caballero, D. A. Hopwood, and F. Malpartida. 1991. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66: 769-780 https://doi.org/10.1016/0092-8674(91)90120-N
  11. Folcher, M., H. Gaillard, L. T. Nguyen, K. T. Nguyen, P. Lacroix, N. Bamas-Jacques, M. Rinkel, and C. J. Thompson. 2001. Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem. 276: 44297-44306 https://doi.org/10.1074/jbc.M101109200
  12. Gramajo, H. C., E. Takano, and M. J. Bibb. 1993. Stationary phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol. Microbiol. 7: 837-845 https://doi.org/10.1111/j.1365-2958.1993.tb01174.x
  13. Horinouchi, S. and T. Beppu. 1994. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol. Microbiol. 12: 859-864 https://doi.org/10.1111/j.1365-2958.1994.tb01073.x
  14. Kinoshita, H., H. Ipposhi, S. Okamoto, H. Nakano, T. Nihira, and Y. Yamada. 1997. Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J. Bacteriol. 179: 6986-6993 https://doi.org/10.1128/jb.179.22.6986-6993.1997
  15. Kinoshita, H., T. Tsuji, H. Ipposhi, T. Nihira, and Y. Yamada. 1999. Characterization of binding sequences for butyrolactone autoregulator receptors in streptomycetes. J. Bacteriol. 181: 5075-5080
  16. Kitani, S., H. Kinoshita, T. Nihira, and Y. Yamada. 1999. In vitro analysis of the butyrolactone autoregulator receptor protein (FarA) of Streptomyces lavendulae FRI-5 reveals that FarA acts as a DNA-binding transcriptional regulator that controls its own synthesis. J. Bacteriol. 181: 5081-5084
  17. Madduri, K. and C. R. Hutchinson. 1995. Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J. Bacteriol. 177: 1208-1215 https://doi.org/10.1128/jb.177.5.1208-1215.1995
  18. Nakano, H., E. Takehara, T. Nihira, and Y. Yamada. 1998. Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J. Bacteriol. 180: 3317-3322
  19. Narva, K. E. and J. S. Feitelson. 1990. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J. Bacteriol. 172: 326-333 https://doi.org/10.1128/jb.172.1.326-333.1990
  20. Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111 https://doi.org/10.1046/j.1365-2958.1999.01579.x
  21. Stratigopoulos, G. and E. Cundliffe. 2002. Expression analysis of the tylosin-biosynthetic gene cluster: Pivotal regulatory role of the tylQ product. Chem. Biol. 9: 71-78 https://doi.org/10.1016/S1074-5521(01)00095-3
  22. Stratigopoulos, G., A. R. Gandecha, and E. Cundliffe. 2002. Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced ${\gamma}$-butyrolactone receptor. Mol. Microbiol. 45: 735-744 https://doi.org/10.1046/j.1365-2958.2002.03044.x
  23. Stratigopoulos, G., N. Bate, and E. Cundliffe. 2004. Positive control of tylosin biosynthesis: Pivotal role of TylR. Mol. Microbiol. 54: 1326-1334 https://doi.org/10.1111/j.1365-2958.2004.04347.x
  24. Takano, E. 2006. ${\gamma}-Butyrolactones$: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9: 1-8 https://doi.org/10.1016/j.mib.2005.12.015
  25. Takano, E., H. C. Gramajo, E. Strauch, N. Andres, J. White, and M. J. Bibb. 1992. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phasedependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 6: 2797-2804 https://doi.org/10.1111/j.1365-2958.1992.tb01459.x
  26. Tomono, A., Y. Tsai, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2005. Transcriptional control by A-factor of strR, the pathwayspecific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J. Bacteriol. 187: 5595-5604 https://doi.org/10.1128/JB.187.16.5595-5604.2005
  27. Wietzorrek, A. and M. Bibb. 1997. A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol. Microbiol. 25: 1177-1184
  28. Yamada, Y. 1999. Autoregulatory factors and regulation of antibiotic production in Streptomyces, pp 177-196. In R. R. England, G. Hobbs, N. J. Bainton, D. McL. L. Roberts (eds.), Microbial Signaling and Communication Cambridge University Press, Cambridge, U.K
  29. Yamazaki, H., A. Tomono, Y. Ohnishi, and S. Horinouchi. 2004. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 53: 555-572 https://doi.org/10.1111/j.1365-2958.2004.04153.x