Application of Enzymatic method to Determine Choline Concentration in Bovine Blood and Muscle

소의 혈액 및 근육 중 choline 농도 분석을 위한 효소측정법의 적용기법의 개발

  • Kim, Young-Il (Pharmaceutical Engineering, Konyang University) ;
  • Jung, Won-Chul (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Shon, Ho-Yeong (Agricultural Technology Center, Yangsan City Hall) ;
  • Kim, Suk (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Hur, Yoen (Apple Tree Laboratory) ;
  • Lee, Hu-Jang (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • 김영일 (건양대학교 제약공학과) ;
  • 정원철 (경상대학교 수의과대학 생명과학연구원) ;
  • 손호영 (경상남도 양산시 농업기술센터) ;
  • 김석 (경상대학교 수의과대학 생명과학연구원) ;
  • 허연 (사과나무 임상연구소) ;
  • 이후장 (경상대학교 수의과대학 생명과학연구원)
  • Published : 2008.09.30

Abstract

Choline is important an organic compound for normal membrane function, acetylcholine synthesis, lipid transport, and methyl metabolism. In biological tissues and foods, there are multiple choline compounds that contribute to choline content. There are so many analytical methods for choline determination, such as radioisotopic, high-performance liquid chromatography, and gas chromatography/mass spectrometry. However, these existing methods are expensive, unmanageable, and time-consuming. In this study, we modified enzymatic method, which is applicable for the determination of choline in milk and infant formulas, and applied to bovine serum and muscle. The calibration curves were linear with higher correlation coefficients than 0.994. Recoveries obtained by calibration curves from the spiked bovine serum and muscle samples varied between 70.6 and 85.2%. The method may be suitable for use as a routine method in the determination of choline for biological tissue and food samples.

콜린은 정상적인 세포벽의 기능, 아세틸콜린의 합성, 지질의 운송, 그리고 매칠기의 공급원으로서 중요한 유기화합물이다. 생물학적인 조직과 식품들 중에 있는 콜린의 분석을 위해 많은 기기분석법들 사용되고 있다. 그러나 이러한 기기분석법들은 고가의 장비를 필요로 하며, 조작이 어렵고, 많은 시간을 필요로 한다. 본 연구에서는 우유 중의 콜린함량을 분석하는데 사용되는 효소측정법을 응용하여 신속하게 소의 혈액과 근육내에 함유된 콜린을 측정할 수 있는 적용기법을 확립하였다. 소의 혈청과 근육에 콜린 표준용액을 spike하여 얻은 표준곡선들은 직선성을 나타내었으며, 0.994 이상의 상관계수를 보였다. 소의 혈청과 근육에서의 회수율은 70.6-85.2%를 보였다. 본 연구를 통하여 확립된 콜린분석법은 생체시료와 식품에 함유된 콜린 함량분석에 용이하게 적용할 수 있을 것으로 기대된다.

Keywords

References

  1. Best, C.H. and Huntsman, M.E.: The effects of components of lecithin upon deposition of fat in the liver. J. Physiol. 75, 405-412 (1932) https://doi.org/10.1113/jphysiol.1932.sp002899
  2. 정한옥, 김초일, 이행신, 정영진: 한국인의 성별, 연령별, 지역별 콜린 섭취 추정량. 한국영양학회지, 38, 320-326 (2005)
  3. Burt, M.E., Hanin, I. and Brennan, M.F.: Choline deficiency associated with total parenteral nutrition. Lancet 2, 638-639 (1980)
  4. Tayek, J.A., Bistrian, B., Sheard, N.F., Zeisel, S.H. and Blackburn, G.L.: Abnormal liver function in malnourished patients receiving total parenteral nutrition: A prospective randomized study. J. Am. Coll. Nutr. 9, 76-83 (1990) https://doi.org/10.1080/07315724.1990.10720353
  5. Zeisel, S.H., Zola, T., daCosta, K. and Pomfret, E.A.: Effect of choline deficiency on S-adenosylmethionine and methionine concentration in rat liver. Biochem. J. 259, 725-729 (1989) https://doi.org/10.1042/bj2590725
  6. Pardini, R.S. and Sapien, R.E.: Trimethylaminuria (fish odor syndrome) related to the choline concentration of infant formula. Pediatr. Emerg. Care. 19, 101-103 (2003) https://doi.org/10.1097/00006565-200304000-00010
  7. Institute of Medicine, Food and Nutrition Board: Dietary Reference Intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, panthothenic acid, biotin and choline. National Academy Press, Washington, DC (1998)
  8. Meck, S.H. and Williams, C.L.: Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport 8, 2821-2835 (1997) https://doi.org/10.1097/00001756-199709080-00003
  9. Olariu, A., Tran, M.H., Yamada, K., Mizuno, M., Hefco, V. and Nabeshima, T.: Memory deficits and increased emotionality induced by beta-amyloid (25-35) are correlated with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus. J. Neural. Transm. 108, 1065-1079 (2001) https://doi.org/10.1007/s007020170025
  10. Moriyama, T., Uezu, K., Matsumoto, Y., Chung, S.Y., Uezu, E., Miyagi, S., Uza, M., Masuda, Y., Kokubu, T., Tanaka, T. and Yamamoto, S.: Effects of dietary phosphatidylcholine on memory in memory deficient mice with low brain acetylcholine concentration. Life Sci. 58, PL111-118. (1996) https://doi.org/10.1016/0024-3205(95)02321-6
  11. Modrego, P.J.: The effect of drugs for Alzheimer disease assessed by means of neuroradiological techniques. Curr. Med. Chem. 13, 3417-3424 (2006) https://doi.org/10.2174/092986706779010289
  12. Sweeney, J.E., Bachman, E.S. and Coyle, J.T.: Effects of different doses of galanthamine, a long-acting acetylcholinesterase inhibitor, on memory in mice. Psychopharmacology 102, 191-200 (1990) https://doi.org/10.1007/BF02245921
  13. Piepenbrink, M.S. and Overton, T.R.: Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the periparturient period. J. Dairy Sci. 86, 1722-1733 (2003) https://doi.org/10.3168/jds.S0022-0302(03)73758-8
  14. Juliette, C.H., Juhi, R.W. and Joanne, M.H.: USDA database for the choline content of common food. USDA Nutrient Data Laboratory, Beltsville, pp. 1-26 (2004)
  15. Lima, J.L., Delerue-Matos, C., Carmo, M. and Vaz, V.F.: Enzymatic determination of choline in milk using a FIA system with potentiometric detection. Analyst 125, 1281-1284 (2000) https://doi.org/10.1039/a910182i
  16. Koc, H., Mar, M.H., Ranasinghe, A., Swenberg, J.A.and Zeisel, S.H.: Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry. Anal. Chem. 74, 4734-4740 (2002) https://doi.org/10.1021/ac025624x
  17. Kaneda, N., Asano, M. and Nagatsu, T.: Simple method for the simultaneous determination of acetylcholine, choline, noradrenaline, dopamine and serotonin in brain tissue by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 360, 211-218 (1986) https://doi.org/10.1016/S0021-9673(00)91664-9
  18. Pomfret, E.A., daCosta, K.A., Schurman, L.L. and Zeisel, S.H.: Measurement of choline and choline metabolite concentrations using high-pressure liquid chromatography and gas chromatography-mass spectrometry. Anal. Biochem. 180, 85-90 (1989) https://doi.org/10.1016/0003-2697(89)90091-2
  19. Woollard, D.C. and Indyk, H.E.: Determination of choline in milk and infant formulas by enzymatic analysis: collaborative study. J. AOAC Int. 83, 131-138 (2000)
  20. Rader, J.I., Weaver, C.M. and Trucksess, M.W.: Extension of AOAC official method 999.14 (choline in infant formula and milk) to the determination of choline in dietary supplements. J. AOAC Int. 87, 1297-1304 (2004)
  21. Zhang, J. and Zhu, Y.: Determination of betaine, choline and trimethylamine in feed additive by ion-exchange liquid chromatography/non-suppressed conductivity detection. J. Chromatogr. A 1170, 114-117 (2007)