DOI QR코드

DOI QR Code

A parametric Study in Incremental Forming of Magnesium Alloy Sheet

인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구

  • Published : 2008.10.01

Abstract

Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.

Keywords

References

  1. Y. S. Kim, 1992, Recent and Future Development of Stamping Technology for Aluminum Car Body Sheets, KSME, Vol. 14, No.1, pp. 3-12
  2. Y. S. Kim, C. Kim, S. Y. Lee, S. Y. Won, S. M. Hwang, 2003, Forming limits for anisotropic sheet metals, JSME. Int. J., Vol. 46A, No.4, pp.627-634
  3. D. Li, A. Ghosh, 2003, Tensile deformation behavior of aluminum alloys at warm forming temperatures, Mat. Sci. Eng. 352A, pp. 279-286
  4. H. G. Jeong, S. Choi, K. H. Na, 2005, Plastic forming technologies of magnesium alloys, Transactions of Materials Processing, Vol. 14, No. 8, pp. 661-667 https://doi.org/10.5228/KSPP.2005.14.8.661
  5. J. K. Park, Y. S. Kim, T. Kuwabara, B. S. You, 2005, Plastic deformation characteristic of AZ31 magnesium alloy sheet, Transactions of Materials Processing, Vol. 14, No. 6, pp. 520-526 https://doi.org/10.5228/KSPP.2005.14.6.520
  6. S. W. Won, S. G. Oh, K. Osakada, J. G. Park, Y. S. Kim, 2004, Evaluation of mechanical properties for AZ31 magnesium alloy(1), 2004 spring conference of KSTP, pp. 53-56
  7. S. Yoshihara, H. Nishimura, 2003, Formability enhancement in magnesium alloy stamping using a local heating and cooling technique circular cup deep drawing process, J. Mater. Proc. Tech. Vol.142, pp. 609-613 https://doi.org/10.1016/S0924-0136(03)00248-6
  8. S. Tagawa, N. Koga, Effect of tool radius of formability during deep drawing of AZ31 magnesium alloy sheets, J. Japan Inst. Light Metal, Vol. 53, pp. 152-156
  9. N. Koga, Practical use of hard-carbon-coated tools in deep drawing of AZ31 magnesium alloy sheets, J. Japan Inst. Light Metal, Vol. 51, pp. 441-445
  10. D. K. Choo, S. Q. W. Oh, J. H. Lee, C. G. Kang, 2005, The drawbility estimation in warm and hot forming of AZ31B magnesium sheet, Transactions of Materials Processing, Vol. 14, No. 7, pp. 628-634 https://doi.org/10.5228/KSPP.2005.14.7.628
  11. J. K. Park, J. S. Lee, B. S. You, Y. S. Kim, 2006, Cup drawing of magnesium alloy sheet using incremental forming, 2006 fall conference of KSTP, pp. 259-262
  12. H. Iseki, K. Kato, S. Sakamoto, 1992, Flexible and incremental sheet metal bulging using a pathcontrolled spherical corners, Trans Japan Soc. Mech. Eng. Ser. C, Vol. 58, No. 554, pp. 3147-3155
  13. H. Iseki, O. Kumon, 1994, Forming limit of incremental sheet metal stretch forming using spherical rollers, Japan Soc. Tech. Plasticity, Vol. 35, No. 406, pp. 1336-1341
  14. T. J. Kim, D. Y. Yang, Improvement of formability for the incremental sheet forming process, Int. J. Mech. Sci., Vol. 42, pp. 1271-1286 https://doi.org/10.1016/S0020-7403(99)00047-8
  15. H. Iseki, 2001, An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller, J. Mater. Proc. Technol., Vol. 111, pp. 150-154 https://doi.org/10.1016/S0924-0136(01)00500-3
  16. M. S. Shim, J. J. Park, 2001, The formability of aluminum sheet in incremental forming, J. Mater. Proc. Technol., Vol. 113, pp. 654-658 https://doi.org/10.1016/S0924-0136(01)00679-3
  17. Y. H. Kim, J. J. Park, 2002, Effect of process parameters on formability in incremental forming of sheet metal, J. Mater. Proc. Technol., Vol. 130-131, pp. 42-46 https://doi.org/10.1016/S0924-0136(02)00788-4
  18. E. Ceretti, C. Giardini, A. Attanasio, 2004, Experimental and simulative results in sheet incremental forming on CNC machines, J. Mater. Proc. Technol., Vol. 152, pp. 176-184 https://doi.org/10.1016/j.jmatprotec.2004.03.024
  19. M. Pohlak, R. Kuttner, J. Majak, 2005, Modelling and optimal design of sheet metal RP&M process, Rapid Prod. J., Vol. 11, pp. 304-311 https://doi.org/10.1108/13552540510623620
  20. G. Hussain, L. Gao, Z. Y. Zhang, 2008, formability evaluation of a pure titanium sheet in the cold incremental forming process, Int. J. Adv. Manuf. Technol., (in press)
  21. C. Chu, A. Needleman, 1980, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol. Vol. 102, pp. 249-256 https://doi.org/10.1115/1.3224807
  22. W. Lievers, A. Pilkey, D. Lloyd, 2004, Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys, Acta Materialia, Vol. 52, pp. 3001-3007 https://doi.org/10.1016/j.actamat.2004.03.002
  23. W. Xia, Z. Chen, D. Chen, S. Zhu, 2008, Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling, J. Mater. Proc. Technol., (in press)
  24. T. Al-Samman, G. Gottstein, 2008, Dynamic recrystallization during high temperature deformation of magnesium, Mat. Sci. Eng. A 490, pp. 411-420 https://doi.org/10.1016/j.msea.2008.02.004

Cited by

  1. Finite element method study of incremental sheet forming for complex shape and its improvement vol.224, pp.6, 2010, https://doi.org/10.1243/09544054JEM1825
  2. Study of Forming Limit for Rotational Incremental Sheet Forming of Magnesium Alloy Sheet vol.41, pp.1, 2010, https://doi.org/10.1007/s11661-009-0043-7
  3. Effects of forming parameters on temperature in frictional stir incremental sheet forming vol.30, pp.5, 2016, https://doi.org/10.1007/s12206-016-0423-z