Heuristic Backtrack Search Algorithm for Energy-efficient Clustering in Wireless Sensor Networks

무선 센서 네트웍에서 에너지 효율적인 집단화를 위한 경험적 백트랙 탐색 알고리즘

  • Published : 2008.09.30

Abstract

As found in research on constraint satisfaction problems, the choice of variable ordering heuristics is crucial for effective solving of constraint optimization problems. For the special problems such as energy-efficient clustering in heterogeneous wireless sensor networks, in which cluster heads have an inclination to be near a base station, we propose a new approach based on the static preferences variable orderings and provide a pnode heuristic algorithm for a specific application. The pnode algorithm selects the next variable with the highest Preference. In our problem, the preference becomes higher when the cluster heads are closer to the optimal region, which can be obtained a Priori due to the characteristic of the problem. Since cluster heads are the most dominant sources of Power consumption in the cluster-based sensor networks, we seek to minimize energy consumption by minimizing the maximum energy dissipation at each cluster heads as well as sensor nodes. Simulation results indicate that the proposed approach is more efficient than other methods for solving constraint optimization problems with static preferences.

제약만족문제(Constraint Satisfaction Problem)의 연구에서 밝혀졌듯이, 제약최적화 문제(Constraint Optimization Problem)를 효율적으로 풀기 위해서는 변수순서화의 경험적 방법이 매우 중요하다. 이기종이 혼합된 무선 센서 네트웍의 에너지 효율적인 집단화 같은 문제는 클러스터 헤드가 기지국에 가깝게 위치하려는 경향이 있다. 본 논문은 이 집단화 문제를 풀기 위해서 정적 우선순위 변수 순서화에 기반을 둔 새로운 접근방법을 제시하고. pnode 라는 새로운 알고리즘을 제안한다. 이 pnode 알고리즘은 우선순위가 가장 높은 변수를 다음 변수로 선택한다. 집단화문제에 있어서 우선순위가 높다는 것은 클러스터 헤드가 최적지역에 근접하게 된다는 것을 의미하며 이것은 문제의 성격상 미리 정해진다. 클러스터화 된 센서 네트웍에서 클러스터 헤드는 에너지 소비가 가장 많이 일어나는 곳이기 때문에 센서 노드뿐만 아니라 클러스터 헤드에서 발생하는 최대 에너지 소비를 최소화하도록 만드는 방법을 찾는 것이 본 논문의 목적이다. pnode알고리즘을 사용하여 시뮬레이션 한 결과 제안된 방법이 다른 방법들보다 우수함을 알 수 있었다.

Keywords