Decimation에 의해 생성된 p-진 m-시퀀스 군의 상호 상관 값의 분포

Cross-Correlation Distribution of a p-ary m-Sequence Family Constructed by Decimation

  • 서은영 (University of Maryland, 전기컴퓨터공학과) ;
  • 김영식 (삼성전자) ;
  • 노종선 (서울대학교 전기 컴퓨터공학부 및 뉴미디어통신공동연구소) ;
  • 신동준 (한양대학교 전자전기공학부)
  • 발행 : 2008.09.30

초록

홀수인 소수 p와 n=4k, 그리고 $d=((p^2k+1)/2)^2$에 대해서, 주기가 $p^n-1$인 p-진 m-수열 s(t)에 대해서 $(p^{2k}+1)/2$개의 서로 다른 decimated 수열들 s(dt+1), $0{\leq}l<(p^{2k}+1)/2$가 존재한다. 이 논문에서는 s(t)와 s(dt+l), $0{\leq}l<(p^{2k}+1)/2$ 사이의 상호상관 값이 $\{-1,-1{\pm}\sqrt{p^n},-1+2\sqrt{p^n}\}$과 같음을 보이고, 상호 상관 값의 분포를 유도하였다.

For an odd prime p, n=4k and $d=((p^2k+1)/2)^2$, there are $(p^{2k}+1)/2$ distinct decimated sequences, s(dt+1), $0{\leq}l<(p^{2k}+1)/2$, of a p-ary m-sequence, s(t) of period $p^n-1$. In this paper, it is shown that the cross-correlation function between s(t) and s(dt+l) takes the values in $\{-1,-1{\pm}\sqrt{p^n},-1+2\sqrt{p^n}\}$ and their, cross-correlation distribution is also derived.

키워드

참고문헌

  1. R.Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inf. Theory, Vol.14, pp.154-156, Jan.1968 https://doi.org/10.1109/TIT.1968.1054106
  2. T.Kasami, Weight distribution formula for some class of cyclic codes, Coordinated Sci. Lab., Univ.Illinois, Urbana-Champaign, Tech. Rep. R-285 (AD 632574), 1996
  3. J.-S.No and P.V.Kumar, A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span, IEEE Trans. Inf. Theory, Vol.35, No.2, pp.371-379, Mar.1989 https://doi.org/10.1109/18.32131
  4. J.-W.Jang, Y.-S.Kim, J.-S.No, and T. Helleseth, New family of p-ary sequences with optimal correlation property and large linear span, IEEE Trans. Inf. Theory, Vol.50, No.8, pp.1839-1844, Aug.2004 https://doi.org/10.1109/TIT.2004.831837
  5. H. M. Trachtenberg, On the cross- correlation functions of maximal recurring sequences, Ph.D.dissertation, Univ.of Southern California, Los Angeles, CA, 1970
  6. T. Helleseth, Some results about the cross- correlation function between two maximal linear sequences, Discrete Math., Vol.16, pp.209-232, 1976 https://doi.org/10.1016/0012-365X(76)90100-X
  7. P.V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properties better than binary sequences, IEEE Trans. Inf. Theory, Vol.37, No.3, pp.603-616, May 1991 https://doi.org/10.1109/18.79916
  8. H. Dobbertin, T. Helleseth, P. V. Kumar, and H. Martinsen, Ternary m-sequences with three-valued cross-correlation function: new decimations of Welch and Niho type, IEEE Trans. Inf. Theory, Vol.47, No.4, pp.1473-1481, May 2001 https://doi.org/10.1109/18.923728
  9. G. J. Ness, T. Helleseth, and A.Kholosha, On the correlation distribution of the Coulter-Matthews decimation, IEEE Trans. Inf. Theory, Vol.52, No.5, pp.2241-2247, May 2006 https://doi.org/10.1109/TIT.2006.872857
  10. T.Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics.Chicago, IL: Markham, 1967