변수 불확실성과 제어기 악성을 가지는 이산 특이시스템의 강인 안정화

Robust Stabilization of Discrete Singular Systems with Parameter Uncertainty and Controller Fragility

  • 김종해 (선문대학교 전자공학부)
  • Kim, Jong-Hae (Division of Electronics Eng., Sun Moon University)
  • 발행 : 2008.09.25

초록

본 논문에서는 변수 불확실성을 가지는 이산시간 특이시스템과 곱셈형 섭동의 약성(fragility)을 가지는 제어기에 대한 강인 안정화 기법과 강인 비약성(non-fragile) 제어기 설계방법을 제시한다. 강인 안정화를 만족하는 비약성 제어기가 존재할 조건과 제어기 설계방법 및 제어기의 비약성 척도를 볼록최적화(convex optimization)가 가능한 선형행렬부등식 접근방법을 이용하여 제안한다. 최대의 비약성 척도를 얻기 위하여 구한 제어기 충분조건은 모든 변수의 견지에서 선형행렬부등식으로 변형한다. 따라서, 제안한 강인 비약성 이산 제어기는 특이시스템의 변수 불확실성과 제어기의 약성에도 불구하고 안정성을 보장한다 마지막으로, 수치예제를 통하여 제안한 알고리듬의 타당성을 확인한다.

This paper presents not only the robust stabilization technique but also robust non-fragile controller design method for discrete-time singular systems and static state feedback controller with multiplicative uncertainty. The condition for the existence of robust stabilization controller, the admissible controller design method, and the measure of non-fragility in controller are proposed via LMI(linear matrix inequality) approach. In order to get the maximum measure of non-fragility, the obtained sufficient condition can be rewritten as LMI optimization form in terms of transformed variable. Therefore, the presented robust non-fragile controller for discrete-time singular systems guarantees robust stability in spite of parameter uncertainty and controller fragility. Finally, a numerical example is given to show the validity of the design method.

키워드

참고문헌

  1. L. H. Keel and S. P. Bhattacharyya, "Robust, fragile, or optimal," IEEE Trans. Automat. Control, vol. 42, pp. 1098-1105, 1997 https://doi.org/10.1109/9.618239
  2. W. M. Haddad and J. R. Corrado, "Resilient dynamic controller design via quadratic Lyapunov bounds," Proc. Of IEEE Conf. on Dec. and Control, pp. 2678-2683, 1997
  3. P. Dorato, C. T. Abdallah, and D. Famularo, "On the design of non-fragile compensators via symbolic quantifier elimination," World Automation Congress, pp. 9-14, 1998
  4. G. H. Yang and J. L. Wang, "Non-fragile H$\infty$ control for linear systems with multiplicative controller gain variations," Automatica, vol. 37, pp. 727-737, 2001 https://doi.org/10.1016/S0005-1098(01)00008-5
  5. I. Masubuchi, Y. Kamitane, A. Ohara, and N. Suda, "H$\infty$ control for descriptor systems: A matrix inequalities approach," Automatica, vol. 33, pp. 669-673, 1997 https://doi.org/10.1016/S0005-1098(96)00193-8
  6. C. L. Lin, "On the stability of uncertain linear descriptor systems," Journal of the Franklin Institute, vol. 336, pp. 549-564, 1999 https://doi.org/10.1016/S0016-0032(98)00041-6
  7. C. H. Fang and F. R. Chang, "Analysis of stability robustness for generalized state-space systems with structured perturbations," Systems and control Letters, vol. 22, pp. 109-114, 1993
  8. S. Xu and C. Yang, "An algebraic approach to the robust stability analysis and robust stabilization of uncertain singular systems," International Journal of Systems Science, vol. 31, pp. 55-61, 2000 https://doi.org/10.1080/002077200291451
  9. C. H. Fang, L. Lee, and F. R. Chang, "Robust control analysis and design for discrete-time singular systems," Automatica, vol. 30, pp. 1741-1750, 1994 https://doi.org/10.1016/0005-1098(94)90076-0
  10. S. Xu, C. Yang, Y. Niu, and J. Lam, "Robust stabilization for uncertain discrete singular systems," Automatica, vol. 37, pp. 769-774, 2001 https://doi.org/10.1016/S0005-1098(01)00013-9
  11. G. Zhang and Y. Jia, "New results on discrete-time bounded real lemma for singular systems: strict matrix inequality conditions," Proc. of American Control Conference, pp. 634-638, 2002
  12. S. Wo, Y. Zou, M. Sheng, and S. Xu, "Robust control for discrete-time singular large-scale systems with parameter uncertainty," Journal of the Franklin Institute, vol. 344, pp. 97-106, 2007 https://doi.org/10.1016/j.jfranklin.2006.08.005
  13. S. Xu, P. V. Dooren, R. Stefan, and J. Lam, "Robust stability and stabilization for singular systems with state delay and parameter uncertainty," IEEE Trans. Automat. Control, vol. 47, pp. 1122-1128, 2002 https://doi.org/10.1109/TAC.2002.800651
  14. P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox, The Math Works Inc., 1995