Microbial Structure and Community of RBC Biofilm Removing Nitrate and Phosphorus from Domestic Wastewater

  • Lee, Han-Woong (Hazardous Substance Research Center-S&SW Louisiana State University) ;
  • Choi, Eui-So (Department of Civil and Environmental Engineering, Korea University) ;
  • Yun, Zu-Whan (Department of Environmental Engineering, Korea University) ;
  • Park, Yong-Keun (Hazardous Substance Research Center-S&SW Louisiana State University)
  • Published : 2008.08.31

Abstract

Using a rotating biological contactor modified with a sequencing bath reactor system (SBRBC) designed and operated to remove phosphate and nitrogen [58], the microbial community structure of the biofilm from the SBRBC system was characterized based on the extracellular polymeric substance (EPS) constituents, electron microscopy, and molecular techniques. Protein and carbohydrate were identified as the major EPS constituents at three different biofilm thicknesses, where the amount of EPS and bacterial cell number were highest in the initial thickness of 0-100${\mu}m$. However, the percent of carbohydrate in the total amount of EPS decreased by about 11.23%, whereas the percent of protein increased by about 11.15% as the biofilm grew. Thus, an abundant quantity of EPS and cell mass, as well as a specific quality of EPS were apparently needed to attach to the substratum in the first step of the biofilm growth. A FISH analysis revealed that the dominant phylogenetic group was $\beta$- and $\gamma$-Proteobacteria, where a significant subclass of Proteobacteria for removing phosphate and/or nitrate was found within a biofilm thickness of 0-250${\mu}m$. In addition, 16S rDNA clone libraries revealed that Klebsiella sp. and Citrobacter sp. were most dominant within the initial biofilm thickness of 0-250${\mu}m$, whereas sulfur-oxidizing bacteria, such as Beggiatoa sp. and Thiothrix sp., were detected in a biofilm thickness over 250${\mu}m$. The results of the bacterial community structure analysis using molecular techniques agreed with the results of the morphological structure based on scanning electron microscopy. Therefore, the overall results indicated that coliform bacteria participated in the nitrate and phosphorus removal when using the SBRBC system. Moreover, the structure of the biofilm was also found to be related to the EPS constituents, as well as the nitrogen and phosphate removal efficiency. Consequently, since this is the first identification of the bacterial community and structure of the biofilm from an RBC simultaneously removing nitrogen and phosphate from domestic wastewater, and it is hoped that the present results may provide a foundation for understanding nitrate and phosphate removal by an RBC system.

Keywords

References

  1. Ahmad, A., J. P. Barry, and D. C. Nelson. 1999. Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp. Appl. Environ. Microbiol. 65: 270-277
  2. Amann, R. I., L. Krumholz, and D. A. Stahl. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762-770 https://doi.org/10.1128/jb.172.2.762-770.1990
  3. APHA. 1995. Standard Methods for Examination of Water and Wastewater, 19th Ed. USA, Public Health Association. Washington, D.C
  4. Bond, P. L., P. Hugenholtz, J. Keller, and L. L. Blackal. 1995. Bacterial community structures of phosphate removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61: 1910-1916
  5. Brosius, J., J. K. Palmer, H. P. Kennedy, and H. F. Noller. 1978 Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805
  6. Choi, E., Z. Yun, Y. Park, H. Lee, H. Jeong, K. Kim, H. Lee, K. Rho, and K. Gil. 2001. Extracellular polymeric substances in relation to nutrient removal from a sequencing batch biofilm reactor. Water Sci. Technol. 43: 185-192
  7. Crocetti, G. R., P. Hugenholtz, P. L. Bond, A. Schuler, J. Keller, D. Jenkins, and L. L. Blackall. 2000. Identification of polyphosphate-accumulating organisms and design of 16S rRNAdirected probes for their detection and quantitation. Appl. Environ. Microbiol. 66: 1175-1182 https://doi.org/10.1128/AEM.66.3.1175-1182.2000
  8. Davey, M. E. and G.. A. O'Toole. 2000. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847-867 https://doi.org/10.1128/MMBR.64.4.847-867.2000
  9. Dignac, M. F., V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, and P. Scribe. 1998. Chemical description of extracellular polymers: Implication on activated sludge floc structure. Water Sci. Technol. 38: 45-53
  10. Egli, K., F. Bosshard, C. Werlen, P. Lais, H. Siegrist, A. J. Zehnder, and J. R. van der Meer. 2003. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microb. Ecol. 45: 419-432 https://doi.org/10.1007/s00248-002-2037-5
  11. Gehr, R. and J. Henry. 1983. Removal of extracellular materials: Techniques and pitfalls. Water Res. 17: 1743-1748 https://doi.org/10.1016/0043-1354(83)90195-1
  12. Gerhart, P., R. G. Murray, W. A. Wood, and N. R. Krieg. 1994. Methods for General and Molecular Bacteriology. American Society of Microbiology, Washington, D.C.
  13. Griffin, P. and G. E. Findlay. 2000. Process and engineering improvements to rotating biological contactor design. Water Sci. Technol. 41: 137-144
  14. Gupta, A. B. and S. K. Gupta. 2001. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Res. 35: 1714-1722 https://doi.org/10.1016/S0043-1354(00)00442-5
  15. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98
  16. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, pp. 458-465, 9th Ed. Williams & Wilkins, Baltimore
  17. Ju, D.-H., M.-K. Choi, J.-H. Ahn, M.-H. Kim, J.-C. Cho, T. Kim, T. Kim, and J.-O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a full-scale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261
  18. Jung, Y.-J., C. S. Park, H. G. Lee, and J. Cha. 2006. Isolation of a novel gellan-depolymerizing Bacillus sp. strain YJ-1. J. Microbiol. Biotechnol. 16: 1868-1873
  19. Larkin, L. M. 1989. Genus II. Thiothrix winogradsky 1888, pp. 2098-2101. In Staley, J. P., M. P. Bryant. N. Pfennig, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 3. Williams & Wilkins, Baltimore
  20. Lee, H. W., S. Y. Lee, J. O. Lee, H. G. Kim, J. B. Park, E. S. Choi, D. H. Park, and Y. K. Park. 2003. The microbial community analysis of 5-stage BNR process with step feed system. Water Sci. Technol. 48: 135-141
  21. Lee, H. W., S. Y. Lee, J. W. Lee, J. B. Park, E. S. Choi, and Y. K. Park. 2002. Molecular characterization of microbial community in nitrate-removing activated sludge. FEMS Microbiol. Ecol. 41: 85-94 https://doi.org/10.1111/j.1574-6941.2002.tb00969.x
  22. Lee, J. W., E. S. Choi, K. I. Gil, H. W. Lee, S. H. Lee, S. Y. Lee, J. W. Lee, and Y. K. Park. 2001. Removal behavior of biological nitrogen and phosphorus, and prediction of microbial community composition with its function, in an anaerobicanoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994-1001
  23. Lee, S. Y., J. B. Bollinger, D. Bezdicek, and A. Ogram. 1996. Estimation of the abundance of an unculturable soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787-3793
  24. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Roudall. 1951. Protein measurement with folin-phenol reagent. J. Biol. Chem. 193: 265-275
  25. Madigan, M. T., J. M. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms, 10th Ed. Pearson Education Inc., Upper Saddle River, New Jersey
  26. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr., P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (ribosomal database project) continues. Nucleic Acids Res. 28: 173-174 https://doi.org/10.1093/nar/28.1.173
  27. Manz, W., R. Amann, M. Vancanneyt, and K.-H. Scheifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in natural environment. Microbiology 142: 1097-1106 https://doi.org/10.1099/13500872-142-5-1097
  28. Manz, W., R. Amann, W. Ludwig, M. Wagner, and K.-H. Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15: 593-600 https://doi.org/10.1016/S0723-2020(11)80121-9
  29. McHatton, S. C., J. P. Barry, H. W. Jannasch, and D. C. Nelson. 1996. High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl. Environ. Microbiol. 62: 954-958
  30. McSwain, B. S., R. L. Irvine, M. Hausner, and P. A. Wilderer. 2005. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol. 71: 1051-1057
  31. Mikkelsen, L. H. and K. Keiding. 2002. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Res. 36: 2451-2462 https://doi.org/10.1016/S0043-1354(01)00477-8
  32. Mino, T., M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. Microbiology and biochemistry of the enhanced biological phosphate removal processes. Water Res. 32: 3193-3207 https://doi.org/10.1016/S0043-1354(98)00129-8
  33. Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156-2162
  34. Neef, A. 1997. Ph.D. thesis. Technical University, Munich, Germany
  35. Neu, T. R. and K. C. Marshall. 1990. Bacterial polymers: Physicochemical aspects of their interactions at interfaces. J. Biomater. Appl. 5: 107-133 https://doi.org/10.1177/088532829000500203
  36. Nielsen, P. H., M. A. de Muro, and J. L. Nielsen. 2000. Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ. Microbiol. 2: 389-398 https://doi.org/10.1046/j.1462-2920.2000.00120.x
  37. Novak, J. T. and B. E. Haugan. 1981. Polymer extraction from activated sludge. J. Water Poll. Control Fed. 53: 1420-1424
  38. Odintsova, E. V., A. P. Wood, and D. P. Kelly. 1993. Chemolithoautotrophic growth of Thiothrix ramosa. Arch. Microbiol. 160: 152-157 https://doi.org/10.1007/BF00288718
  39. Pillay, D., B. Pillay, A. O. Olaniran, W. H. L. Stafford, and Don A. Cowan. 2007. Microbial community profiling in cis- and trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 17: 560-570
  40. Pinar, G., E. Duque, A. Haidour, J. M. Oliva, L. Sanchez-Barbero, V. Calvo, and J. L. Ramos. 1997. Removal of high concentrations of nitrate from industrial wastewater by bacteria. Appl. Environ. Microbiol. 63: 2071-2073
  41. Pinar, G., K. Kovarova, T. Egli, and J. L. Ramos. 1998. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures. Appl. Environ. Microbiol. 64: 2970-2976
  42. Pynaert, K., B. F. Smets, D. Beheydt, and W. Verstraete. 2004. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ. Sci. Technol. 38: 1228-1235 https://doi.org/10.1021/es030081+
  43. Pynaert, K., B. F. Smets, S. Wyffels, D. Beheydt, S. D. Siciliano, and W. Verstraete. 2003. Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor. Appl. Environ. Microbiol. 69: 3626-3635 https://doi.org/10.1128/AEM.69.6.3626-3635.2003
  44. Rijnaarts, H. H. M., W. Norde, E. J. Bouwer, J. Lyklema, and A. J. B. Zehnder. 1995. Reversibility and mechanism of bacterial adhesion. Colloids Surf. B Biointerf. 4: 5-22 https://doi.org/10.1016/0927-7765(94)01146-V
  45. Robert, J. S., T. Mino, and M. Onuki. 2003. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 27: 555-565
  46. Roller, C., W. Wagner, R. Amann, W. Ludwig, and K.-H. Schleifer. 1994. In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140: 2849-2858 https://doi.org/10.1099/00221287-140-10-2849
  47. Sakano, Y., K. D. Pickering, P. F. Strom, and L. J. Kerkhof. 2002. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support. Appl. Environ. Microbiol. 68: 2285-2293 https://doi.org/10.1128/AEM.68.5.2285-2293.2002
  48. Schmid, M., U. Twachtmann, M. Klein, M. Strous, S. Juretschko, M. Jetten, J. W. Metzger, K. H. Schleifer, and M. Wagner. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23: 93-106 https://doi.org/10.1016/S0723-2020(00)80050-8
  49. Schramm, A., D. De Beer, M. Wagner, and R. Amann. 1998. Identification and activity in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480-3485
  50. Sutherland, I. W. 1997. Microbial exopolysaccharides - structural subtleties and their consequences. Pure Appl. Chem. 69: 1911-1917 https://doi.org/10.1351/pac199769091911
  51. Sutherland, I. W. and L. Kennedy. 1996. Polysaccharide lyases from gellan-producing Sphingomonas spp. Microbiology 142: 867-872 https://doi.org/10.1099/00221287-142-4-867
  52. Tal, Y., J. E. Watts, and H. J. Schreier. 2006. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system. Appl. Environ. Microbiol. 72: 2896-2904 https://doi.org/10.1128/AEM.72.4.2896-2904.2006
  53. Tawfik, A., B. Klapwijk, F. El-Gohary, and G. Lettinga. 2002. Treatment of anaerobically treated domestic wastewater using rotating biological contactor. Water Sci. Technol. 45: 371-376
  54. Tchobanoglous, G. and F. L. Burton. 1990. Wastewater Engineering Treatment, Disposal and Reuse, 3rd Ed. McGraw-Hill Inc. Publishers, New York, U.S.A.
  55. Williams, T. M. and R. F. Unz. 1989. The nutrition of Thiothrix, Type 021N, Beggiatoa and Leucothrix strains. Water Res. 23:15-22 https://doi.org/10.1016/0043-1354(89)90055-9
  56. Wingender, J., T. R. Neu, and H. C. Flemming. 1999. What are bacterial extracellular polymeric substances, pp. 1-20. In J. Wingender, T. R. Neu, and H.-C. Flemming (eds.), Microbial Extracellular Polymeric Substances: Characterization, Structure, and Function. Springer, Berlin, Germany
  57. You, S. J., C. L. Hsu, S. H. Chuang, and C. F. Ouyang. 2003. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Res. 37: 2281-2290 https://doi.org/10.1016/S0043-1354(02)00636-X
  58. Yun, Z., H. Lee, and E. Choi. 2004. Enhanced biological phosphorus removal in RBC with SBR modification. Water Sci. Technol. 50: 121-130
  59. Yun, Z., W. Jo, Y. Yi, I. Choi, E. Choi, and M. Min. 2000. Effects of sludge settling characteristics in BNR system performance. Water Sci. Technol. 42: 283-288
  60. Zhang, X., P. L. Bishop, and B. Kinkle. 1999. Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Sci. Technol. 39: 211-218
  61. Zopfi, J., K. Thomas, P. L. Nielsen, and B. B. Jorgensen. 2001. Ecology of Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle. Appl. Environ. Microbiol. 67:5530-5537 https://doi.org/10.1128/AEM.67.12.5530-5537.2001