AN} | & et B = A
Vol. 9, No. 4, pp. 945-951, 2008

High Performance Data Cache Memory Architecture

Hong-Sik Kim' and Cheong-Ghil Kim”
IAE dlolg FiA] W R F=

1 2%

4

Ofoh

Abstract
spatial and temporal locality is proposed. The proposed data cache consists of a hardware prefetch unit and two

In this paper, a new high performance data cache scheme that improves exploitation of both the

sub-caches such as a direct-mapped (DM) cache with a large block size and a fully associative buffer with a
smail block size. Spatial locality is exploited by fetching and storing large blocks into a direct mapped cache,
and is enhanced by prefetching a neighboring block when a DM cache hit occurs. Temporal locality is
exploited by storing small blocks from the DM cache in the fully associative buffer according to their activity
in the DM cache when they are replaced. Experimental results on Spec2000 programs show that the proposed
scheme can reduce the average miss ratio by 12.53%~23.62% and the AMAT by 14.67%~18.60% compared to
the previous schemes such as direct mapped cache, 4-way set associative cache and SMI(selective mode
intelligent) cache[8].

Key Words : data cache, temporal locality, spatial locality, and prefetch, AMAT(average memory access time).

2 o F1h& A YX(spatial locality) E A17HE A Ad(temporal locality)& FAlo] FAE = e A=E 24T
giolg] Al F2E Aokt At A dzels s=go] Zajwz]l I F 8% 371§ A= AHAMIOM:
direct mapped) 7HA|et Zr2 BE AV|E 2= 43 AMHFA: fully associative) 7§A19] 8h9) FHA] Fdom
FE YL 2 B2 diojgE diXEte A AR siAl] ARste R4 AR, DM 7iA] S|E7F S A
ol 1 o)% dlojg £5& ZEjuix gozn HHs "Hoh ARty A9AAE 22 E5 dolE7t DM AR Z5-E
AA = 2 B0 34 v|Ee| webr Fadt dlojels AN Al AT eZH HAPET. Spec2000 A
vl zz ol gt Ad Zubo] oshd AIME Al LRE BlS 2719 AP A4, 49l0] ABAVIE way
set associative cache) %! SMi(selective-mode intelligent cache) 744] [81%58 7]&o] FRo] H|3|A ujlA H|E(miss
rate) S HFR O 12.53~23.62% “18]31 AMAT(average memory access time)S HFA 202 14.67~18.60% = 5

& Sk

1. Introduction

Cache

performance since they are very effective in reducing the

memories can improve overall system
average memory access time (AMAT) by exploiting two
types of localities - temporal and spatial - inherent in the
reference stream of a typical application program.
Temporal locality is due to the property that recently

referenced data will be referenced again in the near future

with high probability and spatial locality is due to the
tendency that adjacent memory locations are referenced
close together in time. However, many application
programs usually have characteristics that may degrade
the cache performance, such as non-unit stride property
and larger vector length than the cache size [1]. The
non-unit stride property of the access vector is that some
of the vectors accessed by numerical application programs

have a stride unequal to one, so that the spatial locality

'Dept. of Electrical & Electronic Engineering, Yonsei University
"Corresponding author : Cheong-Ghil Kim(cgkim@nsu.ac kr)
Received July 1, 2008 Revised August 10, 2008

945

*Dept. of Computer Science, Namseoul University

Accepted August 11, 2008

Fa4tet7 &8 =R A9d A4Z, 2008

Data from/to CPY

Data Address from CRU

A O Tou wite D Teg tonox Bits

o e

Bk Enatiy

Drgtetihing Lo B ok

Data eracs
e il

e Tag bits

i 1 i §
tag wahin Uty 48 2 bt Oata b | ilw i1 1
FA Butfer
targe ok <
> TR i log Py
Ui
CAM
oo T
: Lb
: | 2
3 T s
3 1
4 L e [—5
- § 1 it .
Sh g pa 1 T
e L controtior
[___________1 £A Enter Hit
Fertsesn A ¥ 4 4
L e swne Miss controliar

Addrass

Gansrator

V' 10 Too bty na T2
Ty cvdes Do

4

#eatarsh Add ons
.

Address to External Memaory

Directed Mapped Cache 4 ravag ons
A
v
Data fromfio External Memory
[Fig. 1} Proposed Data Cache Scheme
probability of a repeated reference into the fully

of a cache system cannot be fully exploited. The stride
means the difference in address between two consecutive
accesses made by an instruction. In addition to the
limitation on exploitation of the spatial locality, utilization
of the temporal locality can be degraded when the vector
length is larger than the cache size since such a larger
vector may sweep itself out. In order to address those
problems, many researches have been proposed [2-14].
In this paper, a new data cache structure that improves
exploitation of both the spatial and temporal locality is
proposed. The proposed data cache consists of three parts
- a direct-mapped cache with a large block size, a fully
associative buffer with a small block size, and a hardware
prefetching unit. In order to exploit both the spatial and
the temporal locality, two different block sizes are used,
such as a small block size to exploit temporal locality and
a large block size, which is a multiple of the small block
size, to exploit spatial locality. Spatial locality is exploited
by fetching a large sized data block into the direct
further
hardware-based prefetching mechanism. Temporal locality

mapped cache, and is enhanced with a

is improved by selectively storing data blocks with a high

946

associative buffer when the data block is evicted from the
direct mapped cache as a result of replacement. The
proposed scheme shows that the total number of prefetch
operation is reduced by 25.72% on average, compared to
the prefetch scheme in [8]. In addition, experimental
results show that the average miss rate and the average
AMAT of the proposed scheme with 8KB direct mapped
cache and 1KB temporal buffer can be reduced by around
12.53%~23.62% and by 14.67%~18.60%, respectively,
compared to various cache schemes with the similar

hardware area.

2. Proposed Cache Memory Scheme

The proposed cache structure is shown in Fig. 1. The
proposed data caching scheme consists of three parts,
such as a prefetch control unit, a direct mapped cache,
and a fully associative buffer. The direct-mapped cache is
the main cache and its organization is similar to a
traditional but for its

direct-mapped cache, unique

High Performance Data Cache Memory Architecture

organization of data entries and additional flag registers
for each data entry. Each data entry of the direct mapped
cache is divided into several banks, each of which is the
size of one block in the fully associative buffer. The
power consumption can be reduced by using the most
significant two bits of the large block offset to activate
just one of the banks in the direct mapped cache. When
the CPU issues a memory reference, the direct-mapped
cache and the fully associative buffer are searched in
parallel. If a reference hits in the direct-mapped cache, but
misses in the fully associative buffer, its corresponding
small block is simply fetched from the direct mapped
cache and the hit bit register for the small block is set.
The prefetch controller generates a prefetch enable signal
when a large block in the direct mapped cache is accessed
with multiple hit bit register set.

The prefetch controller generates a prefetch enable
signal when a large block in the direct mapped cache is
accessed with multiple hit bit register set. If a prefetch
enable signal is issued after i-th large block hits, both the
tags of the direct mapped cache and the tags of the fully
associative buffer are searched to detect whether the
(i+1)-th large block is already present. The address for
(i+1)-th large block is generated by the address generator.
One cycle search overhead occurs, but its overhead is
negligible because prefetching is initiated in response to
only about 2.67%~3.17% of the total number of addresse
references on average, according to the experiments of the
proposed scheme with various setassociative buffer sizes
on SPEC2000 benchmarks. If the (i+1)-th large block
does not exist in either the direct mapped cache nor the
fully associative buffer, then the (i+1)-th large block is
fetched into a prefetch buffer and the P bit in the i-th
large block is set to prevent the prefetch control unit from
generating further prefetches for the i-th large block. The
number of prefetch buffer entries is assumed to be one.
In {8], tags of only the fully associative buffer are
searched when prefetch signal is set, so that the
incoherency copies may occur. Since the proposed scheme
searches both the tags of all the caches blocks, such a
pollution can be prevented. When a miss occurs in both
of the direct-mapped cache and the fully associative
buffer, the cache controller initiates miss handling in
order to fetch the missing large block into the direct

mapped cache and moves small blocks evicted from the

direct mapped cache into the fully associative buffer.
Also, the large block data content in the prefetch buffer
is moved into the direct mapped cache. The time of data
transfer from the prefetch buffer to the cache is hidden
because much more cycles are required for miss handling
than the transfer cycles. In this paper, 19 clock cycles are
assumed for the miss handling overhead. The missed
block, however, may exist in the prefetch buffer.
Therefore, when the block in the prefetch buffer is
transferred into the direct mapped cache, the tag value in
the prefetch buffer is simultaneously compared with the
miss address. If the comparator shows a match, the data
content in the prefetch buffer is delivered not only to the
spatial buffer and to the CPU at the same time. The

ongoing miss handling is canceled by the cache controller.

3. Operational Model

The process for the management of the proposed

caching scheme is described in more detail. For
simplicity, we use as an example an 8KB direct-mapped
cache with a large block size of 32-bytes and a 64 byte
spatial buffer with a small block size of 8-bytes without
loss of generality. The address map for each sub-cache
blocks of the proposed scheme is shown in Fig 2. In
addition, let assume that a 32-bit memory address, such as
FFFFFF00, is generated by the CPU. In case of the
direct-mapped cache, the tag field is 19-bits (A: 7FFFF),
the index field is 8-bits (B:F8), and the offset field is
5-bits. The most significant two bits of the offset field,
the small block offset bits, are used to select one of the
four banks in the direct mapped cache. In this example,
since the value of the small block offset bits is 2-bits (C:
00), the first small block (small block0) is selected. In the
fully associative buffer, the tag field is 29-bits (D:
IFFFFFFO) and the offset field is 3-bits.

When a direct mapped cache hit occurs or the large
block data corresponding the referenced data address
(whose tag value A and index bit value is B) exists in the
direct mapped cache, the small block data whose small
block offset is C (00) are sent to the CPU and the hit bit
for referenced small block (small block0) is set to identify
it as a referenced one. In this case, if P bit for the large

block entry is in the reset state, a prefetch operation is

947

A7) et sl=ER) AW A4D, 2008

% ,
gf Smaliblock
Flagbitsize 8(2%bytes |
D20Bits
FA Cache (64 Bytes) g ! . bl
H
51
,’l
Tag field for FA
31 13 12 s 4 32
! A T T
HEEEEEEEEEEEEEEEEE RN
Tag field for DM Index field for DM Offset field for DM
Address issued by CPU Sbits 2 bits sefect
small block
7 e ™.
1 2
:
“‘!' =
TAG 8 S
&
DM Cache (8 KBytes) ‘ T‘;g“w"me *""Large block(4 small blocks) size !
. 19bits =32 bytes J

[Fig. 2] An Example of address map for two sub-cache memories of the proposed scheme

triggered if more than one hit bits for the corresponding
large block are already set. At the same time, the tags of
both the direct mapped cache and the fully associative
buffer are searched for the prefetch address which is
generated by the address generator in order to check
whether it already exists in the cache memories. The
address generator generates the prefetch address by
incrementing the index field of the referenced address. In
this example, the prefetch address shall be FFFFFF20.
Therefore, the tag value and index value of the prefetch
address for the direct mapped cache search are 7FFFF and
F9, respectively. In addition, the tag address of the
prefetch address for the fully associative buffer is
IFFFFFF4. If the data corresponding to the prefetch
address does not exit in the cache memories, the prefetch
operation is continued and the P bit for the corresponding
large block is set in order to prevent repetition of the
prefetch operation for the referenced large block.
Otherwise, the prefetch operation is cancelled.

If a read access to the fully associative buffer hits, then

948

the requested data block is transferred to the CPU. If a
write access to the fully associative buffer is a hit, then
the write operation is performed and the dirty bit is set.

When a miss occurs in both caches, a large block
including the missed small block is brought into the direct
mapped cache from the next level memory or data
corresponding to the tag value of the large block (A) are
fetched. If the valid bit for the large block is set, the
fetched data will replace the previous data in the
corresponding direct mapped cache entry so that some
small blocks with hit bit register set shall be transferred
into the fully associative buffer in order to exploit the
temporal locality of the small blocks which have been
previously hit. If the hit bit, Hi, of the small block i (0<i
<3) is set, the index bit field (B:F8) and the two bit
small bit offset field (C:i) are attached to the tag value of
the direct mapped cache (A) by the address generator.
The two-bit small block offsets corresponding to the four
small blocks are 00°, ‘01°, °10°, and ‘l1°, separately.
Therefore the tag address of (ABC) is generated for the

High Performance Data Cache Memory Architecture

[Table 1] Experimental results on SPEC 2000 benchmark programs for various cache schemes

. Performance

Caches Capacity Acar

(byte) average Miss rate average AMAT (mm32)
32 KB Direct Mapped Cache 32K 9.87853 2.876925 0.494700
64 KB Direct Mapped Cache 64K 8.346137 2.585766 0.970413
16KB 4-Way Set Associative Cache 16K 8.736124 2.659864 0.349832
16K Victim Cache with 1KB Buffer 17K 8.320473 2.580890 0.358371
SMI with 8KB DM and 1KB Buffer 9K 6.855545 2.538740 0.362667
SMI with 8KB DM and 2KB Buffer 10K 6.184494 2.461915 0.478407
Proposed with 8KB DM and 64B Buffer 8K 6.354995 2.283201 0.231021
Proposed with 8KB DM and 1KB Buffer 9K 5.409480 2.100770 0.382077

fully associative buffer by the address generator. For
example, if HO has logic value of ‘1°, then the tag address
for corresponding fully associative buffer entry shall be
1FFFFFEO.

Since any modified or referenced small block is
transmitted to the fully associative buffer before its
corresponding large block is replaced, cache write-back
operation does occur only from the fully associative
buffer. In case of the proposed caching scheme, the write
back operation is performed only for the 8-byte small
blocks with hit bit register set so that the write traffic into

memory can be possibly reduced.

4. Experimental Results

In this section, the simulation environment,
performance metrics, and area overhead are explained in
detail. Simple Scalar’fARM processor simulator {15] is
information on SPEC2000

benchmark programs. Only data references are collected

used to collect runtime
and used for the simulation. For the comparisons with
other caches in terms of performance and area overhead,
the direct-mapped cache (DM), the victim cache (VT), the
4-way set associative cache (4W) and a SMI cache are
used.

The performance of the proposed caching scheme
depends on the number of hit bits for prefetching and the
size of the fully associative buffer. The miss rate is
calculated by dividing the number of references that arc
not found in the cache with the number of the total
memory references. Generally, the more meaningful
measure to evaluate the performance of any given

memory-hierarchy is the average memory access time

[18]. So in this paper, miss rate and AMAT are used for
the evaluation of the proposed cache memory.
Table 1

scheme with the other cache memories including the

describes the comparison of the propsed

direct mapped caches, the victim caches, 4-way set
associative cache and SMI cache in terms of hardware
area and cache performance. For the area analysis, the
CACTI-4.2 simulator is used under 0.09 pm technology
and 1.2 V supply voltage. According to the experimental
results, the proposed scheme with 1KB buffer results in
similar size as 8KB SMI cache with 1KB buffer, 16KB
4-way set associative cache, and 16KB victim cache with
1KB buffer, although it shows much higher performance
gains such as smaller miss rate by (12.53~23.62%) and
smaller AMAT by (14.67~18.60%) compared to those
previous caching schemes. In case of the proposed
scheme with 64 byte buffer, the experimental results
shows that the proposed scheme can results in smaller
average miss rate by (12.53~23.62%) and the smaller
average AMAT by (14.67~18.60%) even with much
smaller hardware area compared to all the previous
schemes. Considering the performance improvement and
the area overhead presented in Table 1, the proposed
cache scheme can guarantee a higher performance with
less hardware area compared to the previous cache

systems.

5. Conclusion

A new high performance data cache structure that
improves the utilization of both the spatial and temporal
locality is proposed. Spatial locality is exploited by

fetching and storing large blocks into a direct mapped

949

Aty a3l =i A A9d A4S, 2008

cache, and is further enhanced by prefetching a
neighboring block when a direct mapped cache hit occurs.
Temporal locality is exploited by storing small blocks
from the direct-mapped cache in the fully associative
temporal buffer according to their activity in the direct
mapped cache when they are evicted from the direct
mapped cache as a result of replacement. Experimental
result based on Spec2000 benchmark programs shows that
the proposed scheme can reduce the average miss ratio by
12.53%~23.62% and the average memory access time by
14.67%~18.60% compared to the previous cache schemes

with the similar hardware area.

References

[1] B. Juurlink, “Unified Dual Data Caches,” Proceedings of
the Euromicro Symposium on Digital System Design,
2003, pp. 33-40

Norman P. Jouppi, “Improving Direct-Mapped Cache
the Addition of a Small Fully
Associative Cache and Prefetch Buffers,” Proceedings
of 17th ISCA, May. 1990, pp. 364-373.

D. Stiliadis and A. Varma, “Selective Victim Caching:

12]

Performance by

(3]
A Method to Improve the Performance of Direct
Mapped Cache,” IEEE Transactions on Computers, Vol
46, No. 5, May 1997, pp. 603-610.

[4] A. Gonzalez, C. Aliagas, and M. Valero, “A Data Cache
with Multiple Caching Strategies Tuned to Different

of Locality,” of

Conference on Supercomputing, 1995, pp. 338-347.

B. Juurlink, “Unified Dual Data Caches,” Proc. The

Euromicro Symposium on Digital System Design, 2003.

pp. 33-40.

V. Milutinovic, M. Tomasevic, B. Markovic, and M.

Types Proceedings International

(3]

[6]
Tremblay, “A New Cache Architecture Concept: The
Split Cache,”
Electro-technical Conference, vol.2, 1996, pp. 1108 -
1111,

J. H. Lee, J. S. Lee, and S. D. Kim, “A new cache

architecture based on temporal and spatial locality,”

Temporal/Spatial 8th Mediterranean

mn

Journal of System Architecture, Vol. 46, Sep. 2000, pp.
1451 - 1467.

J. H. Lee, S.-W. Jeong, S. D. Kim, and C.C.Weems,
“An Cache
Prefetching for High Performance,” IEEE Transactions
on Computers, Vol. 52, No. 5, 2003, pp. 607 - 616.

(8]

Intelligent System with Hardware

950

[9] T. Mowry, M. S. Lam, and A. Gupta, “Design and

evaluation of a compiler algorithm for prefetching,”
of Sth
Architectural Support for programming Languages and

Proceedomgs International Conference on
Operating Systems, 1992, pp. 62-73.

[10] AK. Porterfield. “Software Methods for Improvement
of Cache Performance on Supercomputer Application,”
PhD dissertation, Rice Univ. 1989.

[11] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. M.
Hwu, “Data Access Microarchitectures for Superscalar
Processors with Compiler-assisted Data Prefetching,”

of 24th Workshop

Microprogramming and Microarchitectures, 1991.

Proceedings Annual on

[12] A.J. Smith, “Cache Memories,” Computing Surveys,
vol. 14, no. 3, 1982, pp. 473-530.

[13] 1.D. Gindele, “Buffer Block Prefetching Method,” IBM
Technical Disclosure Bulletin, Vol. 20, no. 2, 1977, pp.
696 - 697

{14] D. Zucker, M.J. Flynn, and R. Lee, “A Comparison of
Hardware Prefetcing Techniques Multimedia
Benchmark,” Proceedings of IEEE Multimedia, 1996,
pp. 236-244.

[15] D. Burger and T.M. Austin, The SimpleScalar tool set,
version 2.0, Technical Report TR-97-1342, University
of Wisconsin-Madison, 1997.

for

Hong-Sik Kim [Regular Member]

° 2004. 8
and Electronic

Yonsei Univ. (Ph.D.)
2004. 11 Post Doctoral
Research Fellow at Bradley
Dept. of Electrical and Computer
Engineering, Virginia Tech.

Dept. of Electrical
Engineering,

|
=
|

+ 2006. 1 : Senior Engineer at System LSI Group in
Samsung Electronics Co.

+ 2007. 4 Research Professor at the Dept. of
Electrical & Electronic Engineering, Yonsei
University.

<Area of Interest>
Design for Testability, Built-in Self Test

High Performance Data Cache Memory Architecture

Cheong-Ghil Kim [Regular Member]

* 2003. 8 : Dept. of Computer
Science, Yonsei Univ. (Master
of Eng.)

* 2006. 8 : Dept. of Computer

Science, Yonset Univ. (Ph.D.)
5 * 2006. 9 : Post Doctoral Researcher
and Research Professorat the Dept.
. of Computer Science, Yonsei Univ.
Professor at the Dept. of Computer

« 2008. 3
Science, Namseou! Univ,

<Area of Interest>
Computer Architecture, Multimedia Embedded Systems

951

