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EXAMPLES AND FUNCTION THEOREMS AROUND
AP AND WAP SPACES

MyunG Hyun CHO, JUNHUI KiM, AND M1 AE MOON

ABSTRACT. We provide some examples around AP and WAP spaces
which are connected with higher convergence properties-radiality, semi-
radiality and pseudoradiality. We also prove a theorem (Theorem 3.2)
that (a) any pseudo-open continuous image of an AP-space is an AP-
space and (b) any pseudo-open continuous image of an WAP-space is
an WAP-space. This answers the question posed by V. V. Tkachuk and
1. V. Yaschenko [10].

1. Introduction

All spaces under consideration are assumed to be Hausdorff. For all unde-
fined terminologies, see [1] and [5].

A space X is said to have the property of Approzimation by Points (Weak
Approzimation by Points), for short, AP(WAP), if for every non-closed set
A and every (some) point z € A — A there is a subset B C A such that
B — A= {z}. Such a set B is also called almost closed. The above definitions
were originated in categorical topology by A. Pultr and A. Tozzi ([7}). P. Simon
([8]) was first to study these properties from a general topological point of view.
We say that a subset A of a space X is AP-closed if for every F' C A the relation
|F — A| # 1 holds. It is clear that X is a WAP space if and only if every AP-
closed subset of X is closed.

A. Bella and 1. V. Yaschenko ([2], [3]) discovered strong connections of these
properties with higher convergence properties-radiality, semiradiality, and pseu-
doradiality. They showed that every semiradial space is WAP, every compact
WAP space is pseudoradial, and a product of compact WAP and compact
semiradial space is WAP.

W. Hong [6] defined the space having the property of Approzimation by
Countable Points, for short, ACP, provided that for every non-closed set A and
every point z € A— A there is a countable subset B C A such that B~ A = {z}.

Received March 4, 2008.

2000 Mathematics Subject Classification. Primary 54A25, 54D55.

Key words and phrases. Fréchet-Urysohn, radial, pseudoradial, AP, WAP, compact.
This paper was supported by Wonkwang University in 2006.

©2008 The Korean Mathematical Society
447



448 MYUNG HYUN CHO, JUNHUI KIM, AND MI AE MOON

He also defined a WACP space as a generalization of a ACP space. It has shown
that WACP implies WAP.

We define a subset A of a space X to be ACP-closed if for every countable
F C A the relation [F — A| # 1 holds. Then it is easy to show that X is a
WACP space if and only if every ACP-closed subset of X is closed.

A space in which every point has a local base linearly ordered by set inclusion
is called a lob space ([4]).

A space X is Fréchet-Urysohn if for any A C X and any = € A there is a
sequence S in A which converges to z. A space X is sequential if for any non-
closed A C X there is a sequence S in A which converges to some z € A — A.
A space X has countable tightness, i.e., t(X) < w, if whenever A C X and
= € A, there exists a countable set B C A such that « € B. A space X is radial
(pseudoradial) if for every non-closed set A and every (some) point z € A — A
there is a transfinite sequence S C A which converges to z. Recall that a subset
A of a space X is k-closed whenever B C A and |B| <  imply B C A. A space
X is semiradial if for every non-k-closed set A there is a transfinite sequence
S C A which converges to a point outside A and satisfies |5] < &.

The relations radial — semiradial — pseudoradial always hold and in general
the arrows cannot be reversed even for compact spaces. For more details on
pseudoradial and related spaces see [2].

2. Some examples

There are some strange situations with evident questions about AP, WAP,
WACP spaces ([2], [3], and [6]). Also, there are still lots of unsolved problems
on how these spaces related to those spaces with radiality, semiradiality, pseu-
doradiality. We provide some examples here which may be already known, but
it is useful for us to see what is going on AP and WAP spaces. At least, we
could only do it under CH and the example is not evident at all.

The following is an example of a radial space.

Example 2.1. Let D be any infinite set with |D| = w, and let p € D. We
define a basic open set B(z) for z € X = {p} U D as follows:

(i) if z € D, then B(z) = {z};

(ii) if £ = p, then B(p) = {p} UG, where G C D and D — G is countable.

Claim 1 : X is radial.

Let A be a non-closed subset of X. Since every countable subset of X is
closed, |JA| = w; and p € A — A. We enumerate A = {2, : a € w;}. We
must show that the well-ordered net A converges to p. Let U be an open
neighborhood of p. Then there exists a subset G C D such that {p}UG C U
where D — G is countable. Since A = (ANG)U(A—-G) and A - G is
countable, we can find 8 € w; such that if & > 3, then z, ¢ A — G. Therefore
2o EANG C ANVU for all & > 5. We have shown that X is radial. O

Theorem 2.2 ([4]). Every radial space X with t(X) < w is Fréchet-Urysohn.



EXAMPLES AND FUNCTION THEOREMS AROUND AP AND WAP SPACES 449

We now give an example of a Hausdorff sequential semiradial space which is
neither AP nor radial.

Example 2.3. Let X = N x NU{y, : n € N} U {z}. We define a basic open
set on X as follows:

(1) (m,n) is an isolated point of X for each m,n € N;

(i) Vi(yn) = {yn} U{(m,n) : m > k} is open in X for each k € N;

(iii) for each p € N,

Wp(z) = U (Vl(yn) - Fn) U {yn nz p} U {Z}

n>p
is open in X where each F, is a finite subset of Vi (y,).

Then the space X is Hausdorff sequential ([1]) and X is not AP ([6]). One
can see easily that X is not radial by Theorem 2.2. We shall show that X is
semiradial. Note that every non closed subset A of X is not w-closed. Suppose
that A is a non w-closed subset of X. Then there is a subset B of A such that
|B| < wand B ¢ A. Since y,’s and z are the only non-isolated points of X,
we may take the following two cases:

Case l: yn € B~ A for somen € N.
Since |Vi(y») N B| = w, the sequence {(m,n) € B : (m,n) € Vi(y»)} con-
verges to y, € A.

Case2:z€B—A.
If An{yyn : n € N} is finite, then take p = 1 + max{n € N: y, € A} and
denote

Wy(z) = U (Vilyn) — Fa) U{yn : n > p} U {2},
nzp
where each F), is a finite subset of Vi(y,). Since |(Vi(yn) — Fn) N B| = w for
some n > p, the sequence {(m,n) € B : (m,n) € (Vi(yn) — Fn)} converges to
Yn.
If AN{yn : n € N} is infinite, then the sequence {yn € A :n € N} converges
to z € A — A. Therefore X is semiradial.

The following is an example of a Fréchet-Urysohn space which is not lob.

Example 2.4. Consider the one-point compactification X = D U {*} where
ID| > w. It is well-known that X is Fréchet-Urysohn, but not first countable.
Moreover, it is easy to see that X is not a lob space.

The following example was given in [6] and [9] which was originally from the
well-known book of Counterexamples in topology written by L. A. Steen and
J. A. Seebach, Jr.. We can say something more on this example. Precisely, this
is an example of a space of countably Fréchet-Urysohn which is not WAP or
even not pseudoradial under CH.



450 MYUNG HYUN CHO, JUNHUI KIM, AND MI AE MOON

Example 2.5. Let X = R and 7; be the usual topology on R. Then 7 =
{O0—-K:0¢€T,K C X is countable} is a topology on X which is called the
countable complement extension topology with ¢(X) > w. Then X is countably
Fréchet-Urysohn, and hence countably AP, but not AP ([6]). Furthermore, we
can prove that X is not WAP with the similar argument as in [6] and X is not
pseudoradial under CH.

Claim 1 : X is not WAP.

Suppose X is WAP. Since A = [0, 1] for a subset A = [0,1]-Q, [A]ap—A4 # 0,
where [A]Jap = AU{z € A— A:3F C Asuchthat F — F = {z}}. So there
exists a subset B of A such that B = B U {p} for some point p € [A]ap — A.
Since every countable subset is closed in X, B is uncountable. For each z €
[0,1]NQ — {p}, we have z ¢ B. Hence there are ¢; > 0 and a countable subset
K; C X such that

((x —€zyz+€;)— Kz)NB =0.
Thus

(U{(m——ez,x-{-ez)—Kz:xe [0,1]nQ_{p}})mB=(z).

Since J{(z —€zyz+ €x) — Kz : 2 € [0,1]NQ—{p}} D A-|{K; : 2z €
[0’ 1] N Q - {p}}a

(4-UiK. 2 €0,1nQ~ {p}})nB=0.

Therefore B C |J{K : z € [0,1]NQ — {p}}, which is a contradiction to the
cardinality of B.

Claim 2 : X is not pseudoradial under CH.

We consider the same subset A in Claim 1. Suppose that a well-ordered net
{24 :a € I} in A converges to a point z € A— A. Since every countable subset
of X is closed, w < |I| < ¢. Then for any basic open neighborhood O — K
ofz, (O-—K)N{zq : a € I} # 0. In fact, (O — K)N{x, : @ € I} must
be uncountable. Denote O, = (z — %,x + %) and U, = O, — Ony1 for each
n € N. Since {z, : @ € I} C U{U, : n € N}, there exists n € N such that
{zq € Uy, : a € I} is uncountable. Since {z, : a € I} converges to z, there
is 8 € I such that if @ > 3, then z, € O,41. Note that {I| = w; under CH.
Hence {2, : a < B} is countable and {zo € U, : @ € I} C {24 : a < B}. This
is a contradiction.

3. Function theorems on AP and WAP spaces

The purpose of the present section is to show to what extent a continuous
mapping satisfying certain conditions transfers properties of the domain spaces
to the range spaces.

Recall that a compact, closed, and continuous map is called a perfect map. A
continuous function f : X — Y is called bi-quotient if for each point y € Y and
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each open collection f in X which covers f~!(y), there is a finite subcollection
U’ of U such that J{f(U): U € U’} is a neighborhood of y.

A continuous function f : X — Y is called pseudo-open if for each point
y € Y and every neighborhood U of f~!(y) we have y € Int(f(U)). We have
the following basic diagram:

open = bi-quotient => pseudo-open = quotient
0 0
perfect = closed

It is well-known that the image of a Fréchet-Urysohn space under a contin-
uous pseudo-open map is a Fréchet-Urysohn space. It is also well-known that
every continuous closed (open) function is pseudo-open.

In {10}, Tkachuk and Yaschenko have shown that any closed continuous
image of an AP(WAP)-space is an AP(WAP)-space, but a quotient image of
an AP-space is not necessarily an AP-space. They also asked the following
question (Problem 4.6): Is an open image of an AP-space an AP-space? How
about open images of WAP-spaces?

We give a positive answer to the question above. Before doing this, we give
a characterization of a pseudo-open map.

Lemma 3.1 ([1]). Let f : X — Y be a continuous map of X onto Y. Then
the following conditions are equivalent:

(a) for each Y' C Y the restriction f to X' = f~1(Y"), the inverse image
of Y', is a quotient map of X' onto Y,

(b) for each y € Y and every open set U in X containing f~'(y), the
interior Int(f(U)) of the image of U contains y (that is, f is pseudo-
openy; ’

(c) whenever BCY andy € Y satisfiesy € B, we have f~ (y)Nf~1(B) #
0.

Theorem 3.2. (a) Any pseudo-open continuous image of an AP-space is an
AP-space.
{b) Any pseudo-open continuous image of an WAP-space is an WAP-space.

Proof. (a) Let X be an AP-space and f: X — Y be a pseudo-open continuous
onto map. Suppose B C Y andy € B—B. Let A = f~}(B). Then ANf~*(y) #
@ by Lemma 3.1. Fix x € An f~!(y). Then x € A — A. Since X is AP, there
exists an almost closed F' C A with z € F for some z € f~!(y). It is easy to
check that D = f(F) is an almost closed subset of B and y € D. Hence Y is
AP.

{(b) A proof is similar to the proof of (a). 0

Since every continuous closed {open) function is pseudo-open, we have the
following corollaries.

Corollary 3.3 ([10]). (2} Any closed continuous image of an AP-space is an
AP-space. :
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(b) Any closed continuous image of an WAP-space is an WAP-space.

Corollary 3.4. (a) Any open continuous image of an AP-space is an AP-space.
(b) Any open continuous image of an WAP-space is an WAP-space.

Remark 3.5. The above corollary answers the question posed by V. V. Tkachuk
and L. V. Yaschenko {10].
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