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A CHARACTERIZATION OF SOBOLEV SPACES BY
SOLUTIONS OF HEAT EQUATION AND A STABILITY
PROBLEM FOR A FUNCTIONAL EQUATION

YUN-SUNG CHUNG, YOUNG-SU LEE, DEOK-YONG KWON,
AND SOON-YEONG CHUNG

ABSTRACT. In this paper, we characterize Sobolev spaces H*(R"), s € R
by the initial value of solutions of heat equation with a growth condition.
By using an idea in its proof, we also discuss a stability problem for
Cauchy functional equation in the Sobolev spaces.

1. Introduction

The heat kernel method which was first introduced by T. Matsuzawa [11] is
to use the heat kernel E(z,t) (see Section 2) to represent functions or general-
ized functions as initial values of solutions of the heat equation. This approach
has been turned out to be a very effective tool when we do harmonic analysis
or solve functional equations via generalized function theories (see [3], [6], [5],
[7] and so on).

Among the various spaces of generalized functions, Sobolev spaces WP*(R"),
s >0, p>1and H*(R"), s € R have provided a convenient framework
for applying the theory of generalized functions to boundary value problems
because of their Hilbert space structure. In the paper [4], the spaces WP* were
characterized by initial values of solutions of the heat equation in the case of
p > 1 by following the approach of [11], but there has not been any result for
the spaces H°(R"), s € R.

The purpose of this paper is to characterize Sobolev spaces H*(R") by using
the initial value of solutions of heat equation. The main theorem (Theorem 3.1)
states that if U{z,t) is a solution of heat equation satisfying that there exists
M > 0 such that for each o € R, there is C, > 0 satisfying

(1) ./]Rn ]0(5,0'2 (1 + ’€|2)s+a <M ma,x{C'ot"’,l}, te (0,T)
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then its initial value must belong to the Sobolev space H*(R™) and conversely,
for every u € H*(R"), the function (u * FE)(z,t) is a heat solution satisfying
(1). Here, and in what follows, * means the convolution with respect to the
space variable z.

The next topic of this paper is a stability problem for Cauchy functional
equation in the space H*(R). A functional equation of the form

flz+y) = flz)+ fy)

is said to be Cauchy functional equation and is naturally extended to the space
of generalized functions as

uoA=uoP;+uoh;,
where A, P; and P, are the functions such that
A(]},y)z.’lf'i'y, P]_(l','y)zal, and PQ(xay):y

for x,y € R and o denotes the distributional pullback (see Section 4). By
using the fact shown in Theorem 3.1 that every element of the space H*(R)
corresponds to a solution of heat equation by convolving the heat kernel E(z, t),
we show that for every solution u € §'(R) of the inequality

luoA—wuo P —uo Pallysry <

the function (u * E}(z,t) can be approximated to an additive function if € > 0
is sufficiently small. Here, and in what follows, * means the convolution with
respect to the space variable z.

2. Preliminaries

In this section, we briefly recall the definition and basic properties of the
Sobolev spaces H*(R™), s € R and the heat kernel E(z,t) which is the funda-
mental solution of the heat equation

(8, — A)U(z,t) =0

in R™ x (0, 00). Here, we use the multi-index notations, |a| = a; + -+ + ay,
al =ail-ap!, 2* = - 2% and 8% = 9 - .- 92 for T = (T1,...,%n) €
R", o = (a1,...,0n) € Nf, where Ny is the set of non-negative integers and
0; = %, We denote by C*°(R") the set of all infinitely differentiable functions
on R", by C°(R™) the set of all functions in C®°(R™) which have compact
supports, by S(R") the space of rapidly decreasing functions in R™ and by
S'(R™) the space of tempered distributions in R™.

We recall the definition of Sobolev spaces H*(R"), s € R as below. For
properties of the spaces, we refer to [9].

Definition. Let s be a real number. We denote by H*(R") the space of all
u € 8'(R™) such that
ae)(1+ €)% € LXR™),
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equipped with the norm

1

fulle = [ [ 18©P @+ i) ag]
where 1 is the Fourier transform of u.

We denote by the n-dimensional heat kernel

-n/2 |2
Elz,t) ={ ((]47rt) exp(—|z|?/4t) zzg,

Now, we give some basic properties of the heat kernel E(z,t). Their proofs can
be found in [11].

Theorem 2.1. (i) E(:,t) is an entire function for every t > 0.
(i) We have

/ E(z,t)de=1, t>0.
(iif) There exist C >0 and a > 0 such that

aje|®
4t
where a can be taken as close as desired to 1 and 0 < a < 1.

2) 102 E(z, )] < Clel= 5% a1 2exp [ - 221], ¢ >0,

The following result of Cauchy problem for the heat equation is well known
and will be very useful to prove the main result of this paper. For its proof, we
refer to [8].

Theorem 2.2. Let T > 0 and U(z,t) be a continuous function on R™ x [0,T)
with the following properties

(i) (8: — A)U(=,t) =0, (z,t) € R" x (0,T),
(ii) There exist C > 0 and k > 0 such that
U(z,t)] < C 3, (2,t) e R™ x [0, T).
Then, U(z,t) is uniquely determined by
U(z,t) = U(z,0) * E(x,1).

3. A characterization of Sobolev spaces

In what follows, for a given function U(z,t) in R"™ x (0,T), the notations
U(€,t) or (FLU)(£,t) denote the Fourier transform of a function U(z,t) with
respect to the space variable x.

We are now in a position to state and prove the main result of this paper.

Theorem 3.1. Let T > 0 and s € R. For every u € H*(R"), the function
U(z,t) = (ux E)(z,t) is a well defined C* function in R™ x (0,T) satisfying
that

(i) (0 —A)U(z,t) =0, (z,t) eR*x(0,T),
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(ii) there exists M > 0 such that for each o € R, there is C, > 0 satisfying
® [ 0EOF (+ 7 de <M max{Cot 1), 1€ (0T)
]Rn

(iii) U(-,t) — u in H3(R™) ast — 0*.
Conversely, if a function U(z,t) € C*(R"™ x (0,T)) satisfies the conditions
(i) and (ii), then there exists u € H*(R™) such that

U(z,t) = (u* E)(z,t), (z,t) €R™*x(0,T).
Furthermore, U(-,t) — u in H*(R™) ast — 0.

Proof. (=) Since E(-,t) belongs to S(R") for each t > 0, the function U(z,t) =
(ux E)(x,t) is well defined in R™ x (0,T). It is easy to see that U(z,t) is a C*
function in R™ x (0, 7)) satisfying the heat equation (i). The condition (ii) can
be shown by considering the following estimate

[0t 0P+ 1ePyode = [ fa@ B oRa+ ) s
= [P -+1€P) [ (14 1€Pe] de
< lull? - sup [~ (1 +- j¢ )
3
for each t € (0,T), with the following inequalities
sup [ (1 1 €)7] < max{ (o/2)4%,1}, te (0,T)
13

for each ¢ > 0 and
sgp [8_2“5'2(1 + l§|2)"] =1, te(0,T)
for each o < 0, which can be obtained easily. Finally, by using (2) in Theo-
rem 2.1 and the fact that » € §’'(R™), it is easy to see that
U(,t) € S(R") C S'(R™), te(0,T)
and hence, by condition (ii), we have
U(-,t) e H*(R™), te(0,T).

Moreover, we have
UG 8) —ulf3 = / |Folu* B)(E,t) —a(€)* (1 + |€%)°d¢

(4) 2
s/lﬁ(5)12(1+|£|2)‘°’ (71" — 1)%dg,



A CHARACTERIZATION OF SOBOLEV SPACES 405

which converges to 0 as t — 0.
(¢=) Take any g9 > § — 5. Then by virtue of Holder’s inequality, we have
1

. A (s+00)/2
/,U(E,t)l dg = /‘U(f,t)l ’ (1 + ’£|2) ) (1+ |€[2)(s+do)/2
< M., max{y/Cy t= 7,1}, t>0

for some M, > 0. Then since U(-,t) € LY(R™) for each ¢t > 0, we have by
Fourier inversion formula,

dg

— 1 F i€z
® e =I5y / O¢, t)esde|

< Mflfo max{ VCay t_;'él,l}’ (z,t) € R" x (0,T).
Now, consider a function

o= {7

where m = [09/2] + 1 if g > 0 and m = 1 if o¢ < 0. Multiplying f with a
suitable C* function with compact support, it is possible to get the following
relation

©) ()" o(e) = 8(6) + wit

for every t € R for suitable functions v(t) and w(t) such that v(t) = f(t) for
t<T/4, v(t) =0for t > T/2 and w(t) € C§°(R) with supp w C [T/4,T/2],
where (t) is the Dirac delta function. Define

V(z,t) = /000 Uz, t+ rv(r)dr.

Then, it is easily seen that V(z,t) is a bounded and continuous function on
R™ x [0,7/2) satisfying the heat equation

(7 (O — AWV (z,t) =0, 0<t<T/2.
Moreover, it follows from (6) and (7) that
(=A)"V(2,1) = (-0,)"V(=,1)
=U(z,t) + /Ooo Uz, t + ryw(r)dr

for (z,t) € R™ x (0,T). Now, put

W(z,t) = - /Ooo Uz, t + r)w(r)dr.
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Then W (z,t) is also a bounded solution of the heat equation in R™ x (0,T/2)
which is continuously extended to R™ x [0,T'/2), and hence by virtue of Theo-
rem 2.2, we have

Uz,t) = (—A)"V(z,t) + W(z,t)

- [(—A)mvo + WO] « Bz, )

for (z,t) € R™ x (0,T/2), where
Vo =V(,0) and Wp=W(,0).

Thus if we put

U= (—A)mVO + WO7
then we have the following unique expression
(8) U(z,t) = (ux E)(z,1)

for (z,t) € R™ x (0,T/2). Furthermore, by the uniqueness property in Theo-
rem 2.2, (8) can be extended to R™ x (0,7).

Now it remains to show that u € H*(R™). By virtue of the fact that V'(-,0)
and W(-,0) are bounded, it is easy to see that u € S'(R™). Moreover, since

ﬁ(f, t) = a(g)e-qa?,

it follows from the monotone convergence theorem that we have
~ s . A — 2
[1©F @+ gy = [ fm ja@) e (14 jeP)ae

= tim [10(€.OF (1+1¢P)at
S M max{C’o, 1},
which indicates u € H*(R"). The convergence U(,t) — u in H*(R") as t — 0%

is easy to see by using the same method given in the inequality (4). This
completes the proof. a

Corollary 3.2. Suppose that T > 0 and s € R. Then for every u € H*(R"™),
the function U(x,t) = (uxE)(x,t) is a well defined C™° solution of heat equation
in R™ x (0,T) satisfying that for each o > n/2 — s, there exist M, > 0 and
Cs > 0 such that

U(z,t)] < M, max{C, t~%,1}, (z,t) €R"x (0,T).

Proof. Since we have for each ¢t > 0,

1 . .
|U(z,t)| = ‘W/U(g,t)e’f'xdg

! 5 s+o 1 .
SW/|U(§J)(1+|§|2)(+ )/2'm)-(;+a—)/2|d€, z € R™,

the result follows from Theorem 3.1. O
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In the proof of the sufficient part of Theorem 3.1, we actually proved the
following:

Corollary 3.3. Let T > 0 and s € R. For every u € H*(R™), the function
Uz, t) = (u x E)(z,t) is a well defined C* function in R™ x (0,T) satisfying
that

(i) (0 —A)U(z,t) =0, (z,t) €R"x(0,T),
(i)

g‘ or each o € R, there is C, > 0 satisfying
100 (416 de < i maxCot 1), te @),
(iil) U(-,t) — u in H*(R™) as t — 0F.
Proof. The same as the proof of the sufficient part of Theorem 3.1. 0

If we only consider the necessity part of Theorem 3.1, the condition (3) may
be weakened as follows :

Corollary 3.4. Let T > 0 and s € R. If a function U(z,t) € C*(R™ x (0,T"))
satisfies

(i) (8 —A)U(z,t) =0, (z,t)€R"x(0,T),
(ii) There exist 0 > & — s, and C > 0 such that

/ [T, )2 A+ [€)%)°t7 dé < Ct™°  for sufficiently small t > 0,
R™
(i) There exists M > 0 such that
/ T2 A+ dE < M for sufficient small t > 0,
]R’I’l.

then there exists u € H°(R™) such that
U(z,t) = (u* E)(z,t), (z,t) €R™x(0,T).
Furthermore, U(-,t) — u in H*(R™) ast — 0F.

Proof. Replace o¢ with o in the proof of the necessity part of the Theorem 3.1
and follow the proof to get the result. O

4. Stability of Cauchy equation in ‘H*®

Many functional equations have been studied in the spaces of some general-
ized functions such as Schwartz distributions, Gevrey distributions and Fourier
hyperfunctions (see [1], 2], [3], [5], [7]. [10]).

In this section, we consider a stability problem for Cauchy functional equa-
tion in Sobolev spaces H°(R) as an application of Theorem 3.1. Making use of
the pullback of generalized functions, Cauchy functional equation

flz+y) = f(=)+ fly)
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is extended to
9) voA=uoP +uoh

when u is a generalized function (see [1], [3], [5]). Here A, P; and P, are
functions defined by A(z,y) =z +y, Pi(z,y) = = and P(z,y) =y.
According to the result as in [5], if v € §'(R) satisfies the equation (9), then
(u* E)(z,t) is a well defined C* function in R x (0, 00) of the form

(u* E)(z,t) = ax + bt

for some a,b € R. Note that we actually get b = 0 in the above equality because
(u* E)(z,t) is a solution of the heat equation.

Now we consider that the Cauchy difference is in the Sobolev space. Using
similar calculations as in Theorem 3.1, we have the following stability theorem
of Cauchy functional equation in the sense of Sobolev space.

Theorem 4.1. Suppose u € S'(R) satisfies the inequality
(10) luoA—uoP —uo Pyl gamey < e.

Then there exist constants o,C and unique a,b such that
(11) |(u* E)(z,t) — (az + bt)| < Cet™°

for all (z,t) € R x (0, Z].

Proof. For convenience, we denote E(z,t) by E¢(x). Let v := uoA—uoPi—uohP,
and U(£,t) = (ux E;)(€). Convolving in v the tensor product E;(z)FE.(y) of
the heat kernel we have

(w0 A) x Ey(z)E, ()] (€, 1) (uo A, Ey(€ — z)Er(n—y))

= <Uz7/Et(€—w+y)Er(n—y)dy>

Uz:/Et(£ +n -z —y)E(y)dy)

(
= (ug, (By x Ep)(€+1—2))
(ug, Eeqr(§ + 10— 1))
U +nt+r)

and similarly we get

[(wo Py) * Ey(zx)Er(y)] (§,m) = U, 1),
[(uo P2) % Ex(z)E,(y)] (§,m) = U(n,T).

Also we note that

/ |F(w * Eu(@)Er (@) 2(1+ [ + [nf?)*dédn
- // (5, )22 =2 (1 4 J¢|2 + |n|?)°dédn < ||v)f e we)-
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Thus inequality (10) is converted into
WUE+nt+7)—UEt) —Um7)lme@) <e
By virtue of Fourier inversion formula and Hélder’s inequality we have
|U(€ +n,t+ 7') - U(§> t) - U(ﬂ» T)l

% / / |Flv * Ee(z)Er(y)](§n)ldédn

IA

1/2

% [/ I}-[U * Et(.’E)E.,.(y)](g’ n)lz(l + |§|2 + |77|2)s+0d§d’l7

g [// (1+ | i_ |n|2)s+gd€d7}

for some sufficiently large ¢ € R. Following the similar calculations as in
Theorem 3.1 we obtain

// |.7:[U * .Et(.’1’,‘).E7‘(y)](§'7 77)!2(1 + |€|2 + |m2)s+ad§dn
= [[ e mPe el e 1k g2 1 iy dea

< |lv]lzre sup{e= 26 =2 (1 4 J€2 + [?)7}
&.n

1/2

< esup{e_”mz(l + |§|2)"}sup{e”2r|"[2(1 +n»°}
3 ]

< €(o/2)* (tr) ™7
for all t,r € (0, §]. Thus we have
|U(z +y,t+71) = Ulz,t) = Uly,r)} < Ce(tr)=°
for some constant C. Putting y = z,r =t and dividing by 2 we get
271U (22, 2t) — Uz, t)| < 27 Cet™2°.
Making use of the induction argument and triangle inequality we obtain
(12) |27"U (2", 2™t) — U(z,t)| < C'et™2°

for some constant C’. Now we set gn(z,t) := 27"U(2"z,2"t). In view of
the inequality (12) it is easy to see that g,(z,t) is a uniform Cauchy se-

quence and hence g(z,t) = lim, .o gn(z,t) exists. Replacing z,y,f,7 by
2"z, 2™y, 2™t, 2™r, respectively and then dividing by 2™ we get
(13) 9@ +y,t+s) =g(z,t) + 9(y,s)

as taking n — oo. It is well known that the continuous solution of the equation
(13) is of the form

g(z,t) = ax + bt
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for some a,b € R. Letting n — oo in (12) we get (11).
Finally we prove the uniqueness. Suppose that h(x,t) satisfies (12) and (13).
Note that

(14) g(kz, kt) = kg(z, t)
for any rational number k. It follows from (14) and triangle inequality we get

klg(z,t) — h{z,1)]| lg(kz, kt) — h(kz, kt)|

< |g(kz, kt) — U(kz, kt)| + |h{kz, kt) — U(kz, kt)|
< 20t %,
Now letting &k — oo, we must have g = h. a
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