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TETRAGONAL MODULAR CURVES X;(M, N)

DAEYEOL JEON

ABSTRACT. In this work, we determine all the modular curves X1(M, N)
which are tetragonal.

0. Introduction

A smooth projective curve X defined over an algebraically closed field & is
called d-gonal if it admits a map ¢ : X — P! over k of degree d. If the genus
g > 2and d = 2, then X is called hyperelliptic. We will say that X is tetragonal
for d = 4.

For positive integers M|N, consider the congruence subgroup I'; (M, N) of
SL2(Z) defined by

I'\(M,N) = {(‘z Z) € SLy(Z) | (‘c’ Z) = ((1) Dmod N, M | b},

Then the modular curve X;{M, N) corresponding to I'1 (M, N) is related to
moduli problems of elliptic curves containing a subgroup isomorphic to

Z/MLZPZ/NZ.

The author, Kim, and Park [9] get the determination of all the tetragonal
modular curves X1(1, N) and X(2, N) which play a central role in determining
the structure occurs infinitely often as the torsion of the elliptic curves over
quartic number fields.

In this paper, we finish determining all the tetragonal modular curves X; (M,
N). It gives useful information for the torsion subgroups of the elliptic curves
over the number fields of higher order.

For X with the genus g(X) > 2 if one has a map ¢ : X — C of degree 2
onto an elliptic curve C' (respectively a hyperelliptic curve C), then X is called
bielliptic (respectively bihyperelliptic).

Our main result is as follows:

Theorem 0.1. The following are equivalent:
(a) X1(M,N) is tetragonal.
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(b) X1(M, N) is rational, elliptic, hyperelliptic, bielliptic or bihyperelliptic.
Ezxplicitly these (M, N) are:
o rational: (1,N =1-10,12),(2,N =2,4,6,8),(3, N = 3,6),(4,4), (5,5);
o elliptic: (1, N =11,14,15),(2,N = 10,12),(3,9), (4, 8);
e hyperelliptic: (1, N =13,16,18);
e bielliptic: (1, N = 17,20 — 22,24),(2, N = 14,16),(3,12), (4, 12), (5, 10),
(7,7),(8,8);
o bihyperelliptic: (2,18).
Remark 0.2. Since a rational curve has maps of degree 2 and 4 to a rational
curve, rational and hyperelliptic curve are tetragonal. Since an elliptic admits
a map of degree 2 to a rational curve, elliptic and bielliptic curves are also
tetragonal. From the definition of a bihyperelliptic curve, we know that it is
tetragonal.

1. Preliminaries
1.1. Modular curves X (N)

Let A be a subgroup of (Z/NZ)* which contains —1. Let XaA(N) be the
modular curve defined over Q associated to the congruence subgroup

Ta(N) := {(‘c’ Z) er(1)|aeA,N|c}.

Note that for A = {+1} this is just X;(1, N'). From now on we denote X;(1, N)
by Xl(N)
Conjugating the group I'y (M, N) with the matrix (} 5 ) we obtain a bira-
tional map from X;(M, N) to Xa(MN) with
A={£,x(N+1),£(2N+1),..., (M -1)N + 1)}.

For d|N, let w4 be the natural projection from (Z/NZ)* to (Z/{d, N/d}Z)*,
where {d, N/d} is the least common multiple of d and N/d.
Theorem 1.1 ([8]). The genus of the modular curve Xa(N) is given by
M [ 9] [ 23 Voo

g(XA(N))=1+ﬁ—Z—?—T,

where

o)

Pflze
v = [{(b mod N)€A|b*+1=0 modN}l'gof(i\lf)
vs = [{(b mod N)€A[b’—b+1=0 modN}"(plg)

B p(d) - o(F)
o = DA

d|N
a>0
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By using the above genus formula and the birational map from X;(M, N)
to Xa(MN), one can calculate the genus of X;{M, N).

1.2. Abramovich’s bound

Let a smooth projective curve X be d-gonal where d is smallest for such d.
Then d is called the gonality of X and is denoted by Gon(X). The best general
lower bound for the gonality of a modular curve seems to be the one that is
obtained in the following way.

Let A1 be the smallest positive eigenvalue of the Laplacian operator on the
Hilbert space L?(Xt) where Xr is the modular curve corresponding to a con-
gruence subgroup I' of I'(1). Let Dr be the index of £I" in I'(1) and dr the
gonality of Xr. Abramovich [1] shows the following inequality:

M Dr < 24dr.

Using the best known lower bound for A;, due to Henry Kim and Peter Sarnak,
as reported on page 18 of [2], i.e., A\; > 0.238, we get the following result.

Theorem 1.2. Let Xr be the modular curve corresponding to a congruence
subgroup T' of index Dr := [[(1) : £T| and let dr be the gonality of Xr. Then
12000
119
In the following, we call the inequality in Theorem 1.2 Abramovich’s bound.

1.3. Clifford index
For a line bundle L € PicX, the Clifford indez of L is the integer
ClLff(L) := deg(L) — 2(h°(X, L) - 1)
and the Clifford index of X itself is defined as
Cliff(X) := min{Clff(L) | A°(X,L) > 2,h*(X,L) > 2}.
It is well-known that Cliff(X) + 2 < Gon(X) < Clff(X) + 3 [3].
1.4. Property N,

Dr < dr.

If X is a non-hyperelliptic curve, then the canonical line bundle wx defines

an embedding X — PH®(X,wx) = P¢~!. Consider the minimal free resolution
0-Fgp—->F—-F—-5—=8x—=0

of the homogeneous coordinate ring Sx = S/Ix as an S-module where S =
C[Xo, X1,-. ., Xg-1] and F; = @jezS(—i—j)P»7. We call B; ; the graded Betti-
numbers. Due to Green and Lazarsfeld[5], X < P9~! is said to satisfy property
Ny if the resolution is of the form

o §Pri(—p—1) > - — §P21(—3) - §P11(=2) - § — Sx — 0.

Therefore property N7 holds if and only if the homogeneous ideal is generated
by quadrics, and property Ny holds for p > 2 if and only if it has property IV;
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and the k** syzygies among the quadrics are generated by linear syzygies for
all 1 <k <p-— 1. Now we recall the following:

Theorem 1.3 (M. Green and R. Lazarsfeld, Appendix in [4]). Let X be a
smooth non-hyperelliptic curve of genus g > 3. Then the canonical embedding
X — P971 fails to satisfy property N, for p > Clff(X).

Thus if the canonical embedding X < P91 satisfies property N, then Cliff(X)
>p+1and Gon(X) >p+3. :

2. Tetragonal curves

As we mentioned in Remark 0.2, all the rational, elliptic, hyperelliptic, biel-
liptic and bihyperelliptic curves are tetragonal. Using Theorem 1.1 one can get
the following proposition.

Proposition 2.1. X;(M,N) has genus 0 or 1 if and only if (M, N) is one of
the 13 following ordered pairs:
o genus 0: (1,N=1-10,12),(2, N = 2,4,6,8), (3, N = 3,6), (4, 4), (5,5);
o genus 1: (1,N =11,14,15), (2, N = 10,12), (3,9), (4, 8);

Mestre prove that the only hyperelliptic modular curves X (N) are X;(13),
X1(16), X1(18). Ishii and Momose (7] asserted that there exist no hyperelliptic
modular curves Xa(N) with {£1} ¢ A ¢ (Z/NZ)*. But the author and Kim
(8] find one and only hyperelliptic modular curve Xa(21) with A = {£1,+8},
and correct their result. Since Xa(21) is not birational to any X;(M, N), we
can conclude that the only hyperelliptic modular curves X;(M, N) are X;(13),
X1(16), X1(18).

The author and Kim determine all the bielliptic modular curves X;(M, N)
as follows:

Theorem 2.2. The curve X1(M, N) is bielliptic only for the following (M, N) :
(1,13), (1,16), (1,17), (1,18), (1,20), (1,21), (1,22), (1,24),
(2,14), (2,16), (3,12), (4,12), (5,10), (7,7), (8,8).
Since there is a natural map X1(2,18) — X;(18) of degree 2 and X;(18) is
hyperelliptic, X;(2, 18) is bihyperelliptic.
In the next section, we prove that the modular curves X(M, N) as men-
tioned above are the only tetragonal modular curves.

3. Non-tetragonal curves

Suppose X;(M, N) is tetragonal. Note that X;(M,N) is birational to
XA(MN). Applying Abramovich’s bound to XaA(MN), we have the follow-
ing:

Lemma 3.1. X;(M, N) is not tetragonal if M > 10 or N > MNy with
1< M <10, where
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Ny =32, Ny =12, N3 =6, Ny =4, Ny =2, Ng =2, Ny =1,
Ng=1Ng=1, Nyg=1.

The author, Kim, and Park [9] prove that the modular curves X;(IN),
X1(2, 2N') are tetragonal only for N =1 - 18,20,21,22,24and N' =1-9.
Therefore we can cut out X;(1,N), X1(2,2N’) with N = 19,23,25 — 32 and
N’ =10,11,12.

The remaining cases we don’t determine are X; (M, N) for following (M, N):

(3,15), (3,18), (4,186), (6,12), (9,9), (10, 10).

To treat the above cases we need to compute the graded Betti numbers of the
canonical embedding of XA (MN). We use the computer programs “Maple”
and “Singular”. First we calculate the homogeneous ideal of the canonical
embedding of XA (M N) by using Maple.

Note that, for such (M, N), Xao(MN) is not hyperelliptic. Thus XA (M N)
can be identified with the canonical curve which is the image of the canonical
embedding

XA(MN)2 Ps (fi(P) -1 fo(P) € PA7H,

where {f1,..., f,} is a basis of the space of cusp forms of weight 2 on XA (M N).
One can get such a basis and their Fourier coefficients from [10]. Then to obtain
the minimal generating system of the homogeneous ideal I(X A (M N)), we have
only to compute the relations of the f;f; (1 < 4,5 < g) by Petri’s theorem.
Since there are (g — 2)(g — 3)/2 linear relations among the f; f;, we get quadric
generators Qx(z1,...,4y) with 1 < k < (g —2)(g — 3)/2 by assigning z; to f;
(for details see [6]).

Now we compute the Betti numbers by using Singular. In fact when the
genus of XA(MN) is big then Singular doesn’t produce Betti numbers well.
Note that since the canonical embedding is always projectively Cohen-Macauly,
the Betti numbers of the canonical curve are equal to those of the hyperplane
section, which allows us to get Betti numbers easier.

We exhibit the so-called Betti-table of the canonical embedding for our cases
in Table 1. All the cases satisfy property N, for p > 2. Thus Gon(X;(M,N)) >
5 by § 1.4 for (M, N) = (3,15), (3,18), (4,16), (6,12), (9,9), (10, 10).

Table 1: The Graded Betti-numbers for the canonical embedding.

genus | X1(M,N) | Bi2 | P22 | Bs,2 || genus | X1 (M,N) | Bi2 | Ba2 | P32
Bii | Ba | Baa Bra | Baa | B3

9 | X315 1071010 X099 ] 010 |20
21 64 70 28 | 105 | 162

X612 [0 ] 00 3 X460 ] 00

21 64 | 70 55 | 320 | 891

0 | X318 [ 0 [ 00 X.(10,10)] 0 [ 0 | 0
28 {105 | 162 55 | 320 | 891




348 DAEYEOL JEON

References

[1] D. Abramovich, A linear lower bound on the gonality of modular curves, Int. Math.
Res. Not. 1996 (1996), no. 20, 1005-1011.

(2] M. H. Baker, E. Gonzslez-Jiménez, J. Gonzélez, and B. Poonen, Finiteness results for
modular curves of genus at least 2, Amer. J. Math. 127 (2005), no. 6, 1325-1387.

[3] M. Coppens and G. Martens, Secant spaces and Clifford’s theorem, Compositio Math.
78 (1991), 193-212.

{4] M. Green, Koszul cohomology and the geometry of projective varieties I, J. Differ. Geom.
19 (1984), 125-171.

[5] M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic
curves, Compositio Math. 67 (1988), 301-314.

[6] Y. Hasegawa and M. Shimura, Trigonal modular curves, Acta Arith. 88 (1999), 129-140.

[7] N. Ishii and F. Momose, Hyperelliptic modular curves, Tsukuba J. Math. 15 (1991),
413-423.

[8] D. Jeon and C. H. Kim, On the arithmetic of certain modular curves, Acta Arith. 130
(2007), no. 2, 181-193.

[9] D. Jeon, C. H. Kim, and E. Park, On the torsion of elliptic curves over quartic number
fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1-12.

[10] William A. Stein, http://modular.fas.harvard. edu.

DEPARTMENT OF MATHEMATICS EDUCATION
KoNGJU NATIONAL UNIVERSITY
CHUNGNAM 314-701, KOREA

E-mail address: dyjeon@kongju.ac.kr



