DOI QR코드

DOI QR Code

REMARKS ON SOME COMBINATORIAL DETERMINANTS

  • Published : 2008.07.31

Abstract

In this note we first give a simple, direct proof of a combinatorial determinant involving the usual higher derivatives and then obtain a corresponding result in positive characteristic.

Keywords

References

  1. K. Conrad, The digit principle, J. of Number Theory 84 (2000), 230-257 https://doi.org/10.1006/jnth.2000.2507
  2. R. Gottfert and H. Niederreiter, Hasse-Teichmuller derivatives and products of linear recurring sequences, Finite fields: theory, applications, and algorithms (Las Vegas, NV, 1993), 117-125, Contemp. Math. 168, Amer. Math. Soc., Providence, RI, 1994
  3. H. Hasse, Theorie der hoheren Differentiale in einem algebraischen Funktionenkorper mit vollkommenem Konstantenkorper bei beliebiger Charakteristik, J. Reine Angew. Math. 175 (1936), 50-54
  4. H. Hasse and F. K. Schmidt, Noch eine Begrundung der Theorie der hoheren Differentialquotienten in einem algebraischen Funktionenkorper einer Unbestimmten, J. Reine Angew. Math. 177 (1937), 215-237
  5. S. Jeong, M. Kim, and J. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory 113 (2005), 53-68 https://doi.org/10.1016/j.jnt.2004.08.013
  6. K. Kedlaya, Another combinatorial determinant, J. Combin. Theory Ser. A 90 (2000), no. 1, 221-223 https://doi.org/10.1006/jcta.1999.3029
  7. P. Knoph, The operator $(x\frac{d}{dx})^n$ and its applications to series, Mathematics Magazine 76 (2003), no. 5, 364-371
  8. L. Mina, Formole generali delle derivate successive d'una funzione espresse mediante quelle della sua inverse, Giornale di Mat. 43 (1904), 196-212
  9. M. Rosen, Number theory in function fields, Graduate Texts in Mathematics 210, Springer-Verlag, New York, 2002
  10. O. Teichmuller, Differentialrechung bei Charakteristik p, J. Reine Angew. Math. 175 (1936), 89-99
  11. H. Wilf, A combinatorial determinant, (unpublished)