DOI QR코드

DOI QR Code

Ultrashort Laser Material Interaction and Its Biomedical and Joining Applications

극초단 레이저의 물질작용 및 바이오메디컬 미세가공과 접합공학의 응용

  • 최해운 (계명대학교 기계자동차공학부)
  • Published : 2008.08.31

Abstract

Keywords

References

  1. C. Molpeceres, S. Lauzurica, J. L. Ocana, J. J. Gandia, L. Urbina, and J. Carabe, "Microprocessing of ITO and a-Si thin films using ns laser sources," J. Micromech. Microeng., 15: 1271-1278, 2005 https://doi.org/10.1088/0960-1317/15/6/019
  2. H. Choi, D. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi Direct-write patterning of indium- tin-oxide film by high pulse repetition frequency femtosecond laser ablation, Applied Optics, 46(23): 5792-5799, 2007 https://doi.org/10.1364/AO.46.005792
  3. B. Stuart, M.F., A. Rubenchik, B. Shore, and M. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Physical Review Letters, 74(12): 2248-2252, 1995 https://doi.org/10.1103/PhysRevLett.74.2248
  4. J. Ihlemann, a.B.W.-R., Excimer laser micro machining of inorganic dielectrics. Applied surface science, 106: 282-286, 1996 https://doi.org/10.1016/S0169-4332(96)00422-9
  5. G. Kopitkovas, T.L., C. David, A. Wokaun, and J. Gobrecht, Surface micromachining of UV transparent materials. Thin solid films, 453: 31-35, 2004 https://doi.org/10.1016/j.tsf.2003.11.074
  6. A. Glover, E.I., and J. Piper, High speed UV micro machining of polymers with frequency doubled copper vaport lasers. IEEE journal of quantum electronic, 1(3): 830-836, 1995 https://doi.org/10.1109/2944.473666
  7. K. Naessens, H.O., P. Daele, and R. Baets, Flexible fabrication of microlenses in polymer layers with excimer laser ablation. Applied surface science, 208-209: 159-164, 2003 https://doi.org/10.1016/S0169-4332(02)01359-4
  8. X. Liu, D.D., and G. Mourou, Laser ablation and micromachining with ultrashort laser pulses. IEEE journal of quantum electronics, 33(10): 1706-1716, 1997
  9. B. Stuart, M.F., A. Rubenchik, B. Shore, and M. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Physical Review Letters, 74(12): 2248-2252, 1995 https://doi.org/10.1103/PhysRevLett.74.2248
  10. S. Nolte, C.M., H. Jacobs, A. Tunnermann, B. Chichkov, B. Wellegehausen, and H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B, 14(10): 2716-2722, 1997 https://doi.org/10.1364/JOSAB.14.002716
  11. C. Momma, S.N., B. Chichkov, F. Alvensleben, and A. Tunnermann, Precise laser ablation with ultrashort pulses. Applied surface science, 109(110): 15-19, 1997 https://doi.org/10.1016/S0169-4332(96)00613-7
  12. T. Tamaki, W. Watanabe, J. Nishi and K. Itoh, Welding of Transparent Materials Using Femtosecond Laser Pulses, Japanese Journal of Applied Physics, 44(22): 687-689, 2005 https://doi.org/10.1143/JJAP.44.L687
  13. T. Tamki, W. Watanabe, K. Ioh, Laser microwelding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558nm, Optics Express, 14(22): 10468-10476, 2006
  14. T. Itina, J.H., Ph. Delaporte, and M. Sentis, Modeling of metal ablation induced by ultrashort laser pulses.Proceedings of symposium H on photonic processing of surfaces - Thin films and devices, E-MRS: 453-454, 2004
  15. F. Vidal, T.J., S. Laville, O. Barthelemy, M. Chaker, B. LeDegoff, J. Margot, and M. Sabsabi, Critical-point phase separation in laser ablation of conductors. Physical Review Letters, 86(12): 2573-2576, 2001 https://doi.org/10.1103/PhysRevLett.86.2573
  16. N. Bulgakova, Possibility of rarefaction shock wave under short pulse laser ablation of solids. Physical Review E, 60(4): R3498 - R3500, 1999 https://doi.org/10.1103/PhysRevE.60.R3498
  17. E. Gamaly, A.R., B. Luther-Davies, and V. Tikhonchuk, Ablation of solids by femtosecond lasers: Ablation mechnasim and ablation thresholds for metals and dielectrics. Physics of plasma, 9(3): 949-957, 2002 https://doi.org/10.1063/1.1447555
  18. L. Schlessinger, J. W, Inverse-bremsstahlung absorption rate in an intense laser field. Physical Review A, 20(1934-1945), 1979 https://doi.org/10.1103/PhysRevA.20.1934
  19. S. Rand, Inverse Bremsstrahlung with High- Intensity Radiation Fields. Physical Review Letters, 136(1B): B231-B237, 1964
  20. S. Valette, R.H., N. Huot, E. Audouard, and R. Fortunier, 2D Calculations of the thermal effects due to femtosecond laser-metal interaction. Applied surface science, 247: 238-242, 2005 https://doi.org/10.1016/j.apsusc.2005.01.080
  21. I. Burakov, N.B., R. Stoian, A. Rosenfeld, and I. Hertel, Theoretical invesitication of material modification using temporally shaped femtosecond laser pulses. Appl. Phys. A, 81: 1639-1645, 2005 https://doi.org/10.1007/s00339-005-3320-3
  22. N. Singh, D.A., J. Schiffern, and D. Doerr, Femtosecond laser productrion of metal surfaces having unique surface structures that are broadband absorvers. Journal of Laser Applications, 18(3): 242-244, 2006 https://doi.org/10.2351/1.2227017
  23. S. Kirkwood, A.V.P., Y. Tsui, and R. Fedosejevs, Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper. Appl. Phys. A, 81(729-735), 2005 https://doi.org/10.1007/s00339-004-3135-7
  24. Y. Jee, M.B., and R. Walser, Laser-induced damage on single-crystal metal surfaces. Optical physics, 5(3): 648-659, 1988
  25. H. Huang, H.Z., and Y. Liu, Experimental investigations machinability of Ni50.6Ti49.4. Smart Materials and Structures, 14: S297-S301, 2005 https://doi.org/10.1088/0964-1726/14/5/01910.1088/0964-1726/14/5/019
  26. P. Mannion, J.M., E. Coyne, G. O'Connor, and T. Glynn, The effect of damage accumulation behabiour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Applied surface science, 223: 275-287, 2004 https://doi.org/10.1016/j.apsusc.2004.03.229
  27. H. Choi, J. Johnson, J. Nam, D. Farson, J. Lannutti, Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation. Journal of Laser Applications, 2007
  28. C. Schaffer, A.B.a.E.M., Laser induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol., 12: 1784-1794, 2001 https://doi.org/10.1088/0957-0233/12/11/305
  29. M. Lenzner, J.K., S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, Femtosecond Optical Breakdown in Dielectrics. Physical Review Letters, 80(18): 4076-4079, 1998 https://doi.org/10.1103/PhysRevLett.80.4076
  30. A. Zoubir, C.R., R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, Laserinduced defects in fused silica by femtosecond IR irradiation. Physical Review B, 73: 224117(5), 2006 https://doi.org/10.1103/PhysRevB.73.224117
  31. C. Aguilar, Y.L., S. Mao, and S. Chen, Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Biomaterials, 26: 7642-7649, 2005 https://doi.org/10.1016/j.biomaterials.2005.04.053
  32. A. Rosenfeld, M.L., R. Stoian, and D. Ashkenasi, Ultrashort laser pulse damage threshold of transparent materials and the role of incubation. Appl. Phys. A, 69(Suppl.): S373-S376, 1999 https://doi.org/10.1007/s003390051419
  33. D. Ashkenasi, M.L., R. Stoian, and A. Rosenfeld, Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation. Appl. Surface Sci., 150: 101-106, 1999 https://doi.org/10.1016/S0169-4332(99)00228-7
  34. S. Campbell, F.D., D. Hand, and D. Reid, Single-pulse femtosecond laser machining of glass. J. Opt. A: Pure Appl. Opt., 7: 162 - 168, 2005 https://doi.org/10.1088/1464-4258/7/4/002
  35. A. Ben-Yakar, A.H., J. Ashmore, R. Byer, and H. Stone, Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass : the formation of rims by single laser pulses. J. Appl. Phys. D, 40: 1447-1459, 2007 https://doi.org/10.1088/0022-3727/40/5/021
  36. D. Gomez, I.G., I. Lizuain, and M. Ozaita, Femtosecond laser ablation for microfluidics. Optical engineering, 44(5): 051105:1-8, 2005
  37. F. Costache, a.J.R., Femtosecond laser induced Coulomb explosion from calcium fluoride. Thin solid films, 453: 334-339, 2004 https://doi.org/10.1016/j.tsf.2003.11.096
  38. Chen J, Farson DF, Rokhlin SI, Femtosecond laser stimulation of electrical discharges in submicron and nanoscale gaps, APPLIED PHYSICS LETTERS, 90(20), 201505, 2007 https://doi.org/10.1063/1.2740480
  39. D. Farson, H. Choi, S. Rokhlin, Electrical discharges between platinum nanoprobe tips and gold films at nanometre gap lengths, Nano-technolgy, 17, 132- 139, 2006
  40. Cumpston et al, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature Vol. 398, 51-53, 1999 https://doi.org/10.1038/17989
  41. http://www.laser-zentrum-hannover.de
  42. H. Zhang, M. Tang, J. McCoy, and T. Her, Deposition of tungsten nanogratings induced by a single femtosecond laser beam, Optical Express 15(10), 5937-5947, 2007 https://doi.org/10.1364/OE.15.005937

Cited by

  1. Porous Bio-degradable Nano-fiber Machining by Femtosecond Laser vol.29, pp.3, 2012, https://doi.org/10.7736/KSPE.2012.29.3.339