DOI QR코드

DOI QR Code

최대 신장성 수축운동에 따른 인체 하지 족배굴곡근의 신경-기계학적 특성 변화

Alterations in the Neuro-Mechanical Properties of Human Ankle Dorsiflexor after Maximum Eccentric Exercise

  • 발행 : 2008.12.30

초록

본 연구에서는 신장성 수축운동에 의한 미세 근수축 요소 손강 이론(Morgan & Allen, 1999)을 검증하고자 신장성 수축운동의 범위에 따른 골격근의 기계학적 특성 변화에 주안점을 두어 실험 연구를 수행 하였다. 12명의 건강한 피험자가 최대 발목 족배굴곡근의 신장성 수축운동을 수행하였고, 운동수행 전에 최대 등척성 발목 족배굴곡 모멘트-각도 관계로부터 최적 발목 각도의 변화를 측정하였다. 신장성 수축운동 추 최적 발목 각도 변화는 신장성 수축운동의 범위와 상관없이 근육의 길이가 긴 쪽으로 변화를 가져왔다(4도, p<.05). 따라서 본 연구의 결과는 현재 많은 연구에서 거론되고 있는 신장성 수축에 의한 근력 저하 및 지연성 근육통의 촉발 기전인 신장성 수축에 의한 미세 근수축 요소 손강 이론의 부합하지 않으며, 이 현상을 설명할 새로운 이론 개발을 위한 후속연구의 필요성을 제기한다.

The purpose of this study was to investigate changes in mechanical properties of human tibialis anterior following eccentric exercise. Healthy subjects (n=12) performed 120 maximum eccentric contraction of ankle dorsiflexor. Before and 1- and 24- hour after the eccentric exercise, ankle dorsiflexion moment-angle relationships were obtained. Along with significant decrease in maximum isometric muscle strength, the shift of the optimum ankle joint angle toward the longer muscle length direction was observed, independent of the ranges of motion of the eccentric exercise. The results of this study demonstrated that eccentric exercise-induced micro muscle damage(Morgan & Allen, 1999) does rut seem to be a sole mechanism of eccentric contraction-induced muscle damage, suggesting further investigation for the better understandings of this phenomenon.

키워드

참고문헌

  1. 이해동, 김승재, 야수오카와카미, 이대연, 이중현, 권순국, 이영신 (2008). 신장성 수축 운동이 근력 발현 최적 길이에 미치는 영향. 대한기계학회 바이오공학부문 춘계학술대회 논문집 60-61.
  2. Balnave C.D., Davey D.F., & Allen D.G. (1997). Distribution of sarcomere length and intracellular calcium in mouse skeletal muscle following stretch-induced injury. Journal of Physiology 502(Pt3), 649-659. https://doi.org/10.1111/j.1469-7793.1997.649bj.x
  3. Brockett C.L., Morgan And DL., & Proske U. (2001). Human hamstring muscles adapt to eccentric exercise by changing optimum length. Medicine and Science in Sport and Exercise 33, 783-790.
  4. Brooks S.V. & Faulkner J.A. (2001). Severity of contraction-induced injury is affected by velocity only during stretches of large stram. Journal of Applied Physiology 91, 661-666.
  5. Brooks S.V. & Faulkner J.A (1996). The magnitude of the initial injury induced by stretches of maximally activated muscle fibres of mice and rats increases in old age. Journal of Physiology 497(Pt2), 573-580. https://doi.org/10.1113/jphysiol.1996.sp021790
  6. Butterfield T.A. & Herzog W. (2005). Is the force-length relationship a useful indicator of contractile element damage following eccentric exercise? Journal of Biomechanics 38, 1932-1937. https://doi.org/10.1016/j.jbiomech.2004.08.013
  7. Chen T.C., Nosaka K., & Sacco P. (2007). Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. Journal of Applied Physiology 102, 992-999. https://doi.org/10.1152/japplphysiol.00425.2006
  8. Endo M. (1972). Stretch-induced increase in activation of skinned muscle fibres by calcium. Nature: New Biology 237, 211-213. https://doi.org/10.1038/237211a0
  9. Fowles J.R., Sale D.G., & MacDougall J.D. (2000). Reduced strength after passive stretch of the human plantarflexors. Journal of Applied Physiology 89, 1179-1188.
  10. Friden J. (1984). Muscle soreness after exercise: implications of morphological changes. International Journal of Sports Medicine 5, 57-66. https://doi.org/10.1055/s-2008-1025881
  11. Friden J., Sjostrom M., & Ekblom B. (1983). Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine 4, 170-176. https://doi.org/10.1055/s-2008-1026030
  12. Cordon A.M., Huxley A.F. & Julian F.J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibers. Journal of Physiology 184, 170-192. https://doi.org/10.1113/jphysiol.1966.sp007909
  13. Gosselin L.E. & Burton H. (2002). Impact of initial muscle length on force deficit following lengthening contractions in mammalian skeletal muscle. Muscle & Nerve 25, 822-827. https://doi.org/10.1002/mus.10112
  14. Hill A.V. (1953). The mechanics of Active Muscle. Preceedings of the Royal Society of London Series B, Biological Sciences 141, 104-117. https://doi.org/10.1098/rspb.1953.0027
  15. Jones C., AlIen T., Talbot J., Morgan D.L., & Proske U. (1997). Changes in the mechanical properties of human and amphibian muscle after eccentric exercise. European Journal of Applied Physiology 76, 21-31. https://doi.org/10.1007/s004210050208
  16. Lieber R.L. & Friden J. (1993). Muscle damage is not a function of muscle force but active muscle strain. Journal of Applied Physiology 74, 520-526.
  17. Morgan D.L. (1994). An explanation for residual increased tension in striated muscle after stretch during contraction. Experimental Physiology 79, 831-838. https://doi.org/10.1113/expphysiol.1994.sp003811
  18. Morgan D.L., Claflin D.R., & Julian F.J. (1996). The effects of repeated active stretches on tension generation and myoplasmic calcium in frog single muscle fibres. Journal of Physiology 497(Pt3), 665-674. https://doi.org/10.1113/jphysiol.1996.sp021798
  19. Morgan D.L. & AlIen D.G. (1999). Early events in stretch-induced muscle damage. Journal of Applied Physiology 87, 2007-2015.
  20. Newham D.J., Mills K.R., Quigley B.M., & Edwards R.H. (1983). Pam and fatigue after concentric and eccentric muscle contractions. Clinical Sciences (London) 64, 55-62.
  21. Nosaka K., Newton M., Sacco P., Chapman D., & Lavender A. (2005). Partial protection against muscle damage by eccentric actions at short muscle lengths. Medicine and Science in Sport and Exercise 37, 746-753. https://doi.org/10.1249/01.MSS.0000162691.66162.00
  22. Prasartwuth O., AlIen T.J., Butler J.E., Gandevia S.C., & Taylor J.L. (2006). Length-dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans. Journal of Physiology 571, 243-252. https://doi.org/10.1113/jphysiol.2005.101600
  23. Schwane J.A. & Armstrong R.B. (1983). Effect of training on skeletal muscle injury from downhill running in rats. Journal of Applied Physiology 55, 969-975.
  24. Talbot J.A. & Morgan D.L. (1998). The effects of stretch parameters on eccentric exercise-induced damage to toad skeletal muscle. Journal of Muscle Research and Cell Motility 19, 237-245. https://doi.org/10.1023/A:1005325032106
  25. Warren G.L., Hayes D.A., LDwe D.A., Prior B.M., & Armstrong R.B. (1993a). Materials fatigue initiates eccentric contraction-induced injury in rat soleus muscle. Journal of Physiology 464, 477-489. https://doi.org/10.1113/jphysiol.1993.sp019646
  26. Warren G.L., Hayes D.A., Lowe D.A., & Armstrong R.B. (1993b). Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle. Journal of Physiology 464, 457-475. https://doi.org/10.1113/jphysiol.1993.sp019645
  27. Whitehead N.P., Allen T.J., Morgan D.L., & Proske U. (1998). Damage to human muscle from eccentric exercise after training with concentric exercise. Journal of Physiology 512(Pt2), 615-620. https://doi.org/10.1111/j.1469-7793.1998.615be.x
  28. Whitehead N.P., Morgan D.L., Gregory J.K., & Proske U. (2003). Rises in whole muscle passive tension of mammalian muscle after eccentric contractions at different lengths. Journal of Applied Physiology 95, 1224-1234.
  29. Yeung S.S. & Yeung E.W. (2008). Shift of peak torque angle after eccentric exercise. International Journal of Sports Medicine 29, 251-256. https://doi.org/10.1055/s-2007-965337