The Different Isotopic Signatures of Co-existing Zooplankton Species in Two Alpine Lakes

두 삼림호수에 공존하는 동물플랑크톤종의 다른 안정동위원소비

  • Lee, Jae-Yong (Department of Environmental Science, Kangwon National University) ;
  • Kim, Bom-Chul (Department of Environmental Science, Kangwon National University) ;
  • Yoshioka, Takahito (Field Science Education and Research Center, Kyoto University) ;
  • Hino, Shuji (Department of Material and Biological Chemistry, Yamagata University)
  • Published : 2008.09.30

Abstract

The stable isotopes ratios ($\delta^{13}C\;and\;\delta^{15}N$) of two coexisting species of zooplankton (Daphnia longispina and Acanthodiaptomus pacificus) and POM were determined in two alpine lakes in Japan. The difference of $\delta^{13}C$ between A. pacificus and D. longispina was 4.1$\pm$0.9‰ in Lake Shirakoma, which was larger than in Lake Panke. Whereas the difference of $\delta^{15}N$ between A. pacificus and D. longispina (2.6$\pm$0.8‰) was larger in Lake Panke than in Lake Shirakoma. $\delta^{13}C$ of POM (-26.6$\pm$1.2‰) in Lake Shirakoma was different from those of zooplankton; it was heavier than those of D. longispina and A. pacificus by 3.7$\pm$1.6‰ and 7.8$\pm$1.0‰, respectively. Whereas $\delta^{15}N$ of POM (2.0$\pm$0.8‰) was similar with those of both A. pacificus and D. longispina. This implies that the two lakes may have different trophic structure and food sources for zooplankton, and each species are grazing on selectively different components of POM. The temporal variation of $\delta^{13}C$ for each zooplankton species was associated with lipid contents of zooplankton in both lakes. The results showed that stable isotope composition of zooplankton can be an useful information for understanding energy pathways and trophic structures in lakes.

Keywords

References

  1. Adams, T.S. and R.W. Sterner. 2000. The effect of dietary nitrogen content on trophic level $^{15}N$ enrichment. Limnol. Oceanogr. 45: 601-607 https://doi.org/10.4319/lo.2000.45.3.0601
  2. Coffin, B.R., B. Fry and R.T. Wright. 1989. Carbon isotopic compositions of estuarine bacteria. Limnol. Oceanogr. 34(7): 1305-1310 https://doi.org/10.4319/lo.1989.34.7.1305
  3. DeNiro, M.J. and S. Epstein. 1978. Influnce of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta. 42: 495-506 https://doi.org/10.1016/0016-7037(78)90199-0
  4. France, R.L., P.A. Del Giorgio and K.A. Westcott. 1997. Productivity and heterotrophy influences on zooplankton $delta$ 13C in northern temperature lakes. Aquatic Microbiology Ecology 12: 85-93 https://doi.org/10.3354/ame012085
  5. Fry, B. and E.B. Sherr. 1984. $\delta^{13}C$ Measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions of Marine Science 27: 13-47
  6. Grey, J., R.I. Jones and D. Sleep. 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable analysis. Limnol. Oceanogr. 46: 505-513 https://doi.org/10.4319/lo.2001.46.3.0505
  7. Gu, B., D.M. Schell and V. Alexander. 1994. Stable carbon and nitrogen isotope analysis of the plankton food web in a subarctic lake. Can. J. Fish. Aquat. Sci. 51: 1338-1344 https://doi.org/10.1139/f94-133
  8. Gu, B., V. Alexander and D.M. Schell. 1999. Seasonal and interannual variability of plankton carbon isotope ratios in a subarctic lake. Freshwater Biol. 42: 417-426 https://doi.org/10.1046/j.1365-2427.1999.00472.x
  9. Gutseit, K., O. Berglund and W. Graneli. 2001. Food quality for Daphnia in humic and clear water lakes. Freshwater Biol. 52: 344-356 https://doi.org/10.1111/j.1365-2427.2006.01697.x
  10. Hamilton, S.K. and W.M. Lewis. 1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezula. Geochim. Cosmochim. Acta. 56: 4237-4246 https://doi.org/10.1016/0016-7037(92)90264-J
  11. Hessen, D.O., T. Andersen and A. Lyche. 1990. Carbon metabolism in a humic lake: Pool sizes and cycling though zooplankton. Limnol. Oceanogr. 35: 84-99 https://doi.org/10.4319/lo.1990.35.1.0084
  12. Jansson, M., A.K. Bergstrom, P. Blomqvist and S. Drakare. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationship in lakes. Ecology 81: 3250-3255 https://doi.org/10.1890/0012-9658(2000)081[3250:AOCAPB]2.0.CO;2
  13. Jones, R.I., J. Grey, D. Sleep and L. Arvola. 1999. Stable isotope analysis of zooplankton carbon nutrition in humic lakes. Oikos 86: 97-104 https://doi.org/10.2307/3546573
  14. Jones, R.I., J. Grey, D. Sleep and C. Quarmby. 1998. An assessment, using stable isotopes, of the importance of allochthonous organic carbon sources to the pelagic food in Loch Ness. Proceedings of the Royal Society B: Biological Sciences 265: 105-111
  15. Karlsson, J., A. Jonsson, M. Meili and M. Jansson. 2004. $\delta^{15}N$ of zooplankton species in subarctic lakes in northern Sweden: effects of diet and trophic fractionation. Freshwater Biol. 49: 526-534 https://doi.org/10.1111/j.1365-2427.2004.01208.x
  16. Karlsson, J., D. lymer, K. Vrede and M. Jansson. 2007. Differences in efficiency of carbon transfer from dissolved organic carbon to two zooplankton groups: an enclosure experiment in an oligotrophic lake. Aquat. Sci. 69: 108-114 https://doi.org/10.1007/s00027-007-0913-2
  17. Kling, G.W., B. Fry and W.J. O'Brien. 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73(2): 561-566 https://doi.org/10.2307/1940762
  18. Matthews, B. and A. Mazumder. 2005. Temporal vatiation in body composition (C : N) helps explain seasonal patterns of zooplankton $\delta^{13}C$. Freshwater Biol. 50: 502-515 https://doi.org/10.1111/j.1365-2427.2005.01336.x
  19. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between $\delta^{15}N$ and animal age. Geochim Cosmochim Acta 48: 1135-1140 https://doi.org/10.1016/0016-7037(84)90204-7
  20. Nozu, Y., K. Fukushima and F. Kumon. 2005. Paleoenvironment inferred a sediment core of Lake Shirakoma. Jpn. J. Limnol. 66: 81-92 https://doi.org/10.3739/rikusui.66.81
  21. Peterson, B.J., J.E. Hobbie and J.F. Haney. 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23(5): 1039-1044 https://doi.org/10.4319/lo.1978.23.5.1039
  22. Pulido-Villena, E., I. Reche and R. Morales-Baquro. 2005. Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach. Can. J. Fish. Aquat. Sci. 62: 2640-2648 https://doi.org/10.1139/f05-169
  23. Rau, G.H. 1978. Carbon-13 depletion in a subalpine lake: carbon flow implications. Science 20: 901-902
  24. Rounick, J.S. and M.J. Winterbourn. 1986. Stable carbon isotopes and carbon flow in ecosystems-measuring $^{13}C$ to $^{12}C$ ratios can help trace carbon pathways. BioScience 36(3): 171-177 https://doi.org/10.2307/1310304
  25. Syvaranta, J., H. Hamalainen and R.I. Jones. 2006. Within-lake variability in carbon and nitrogen stable isotope signatures. Freshwater Biol. 51: 1090-1102 https://doi.org/10.1111/j.1365-2427.2006.01557.x
  26. Takahashi, K., T. Yoshioka, E. Wada and M. Sakamoto. 1990. Temporal variations in carbon isotope ratio of phytoplankton in a eutrophic lake. J. Plankton Res. 12: 788-808
  27. Vander Zanden, M.J. and J.B. Rasmussen. 1999. Primary consumer $\delta^{13}C$ and $^{15}N$ and the trophic position of aquatic consumers. Ecology 80: 1395-1404 https://doi.org/10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2
  28. Vanderklift, M.A. and S. Ponsard. 2003. Sources of variation in consumer-diet $\delta^{15}N$ enrichment: a meta-analysis. Oecologia 136: 169-182 https://doi.org/10.1007/s00442-003-1270-z
  29. Yoshioka, T., E. Wada and H. Hayashi. 1994. A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology 75(3): 835-864 https://doi.org/10.2307/1941739
  30. Yoshioka, T., E. Wada and Y. Saijo. 1988. Isotopic characterization of Lake Kizaki and Lake Suwa. Jpn. J. Limnol. 49(2): 119-128 https://doi.org/10.3739/rikusui.49.119
  31. Yoshioka, T., H. Hayashi and E. Wada. 1989. Seasonal variations of carbon and nitrogen isotope ratios of plankton and sinking particles in Lake Kizaki. Jpn. J. Limnol. 50(4): 313-320 https://doi.org/10.3739/rikusui.50.313
  32. Yoshida, T., T.B. Gurung, M. Kagami and J. Urabe. 2001. Contrasting effects of a cladoceran (Daphnia galeata) and a calanoid copepod (Eodiaptomus japonicus) on algal and microbial plankton in a Japanese lake, Lake Biwa. Oecologia 129: 602-610 https://doi.org/10.1007/s004420100766
  33. Zohary, T., J. Erez, M. Gophen, I. Berman-Frank and M. Stiller. 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39: 1030-1043 https://doi.org/10.4319/lo.1994.39.5.1030