초록
유비쿼터스 컴퓨팅의 발전에 따라 일대일 개인화 서비스를 위한 인프라스트럭처가 구축되면서, 사용자의 상황과 환경, 즉 상황인식 기반 서비스의 중요성이 부각되고 있다. 스마트 홈은 현실공간과 가상공간을 연결하여 가상공간에서 현실의 상황을 정보화하고 이를 활용하여 사용자 중심의 지능화된 서비스를 제공하는 기술이다. 본 논문에서는 스마트 홈에서 마이닝을 이용한 행동 순차 패턴 발견을 제안하였다. 마이닝을 이용하여 위치 트랜잭션에서 발생하는 위치간의 연관 규칙에 시간의 변이를 추가하여 행동 순차 패턴을 발견하였다. 인식된 시간 순서에 따라 사용자가 이동한 경로의 파악 및 행동 방향을 예측하고 그에 따른 서비스가 가능하다. 마이닝을 이용한 행동 순차 패턴의 성능 평가를 하기 위해 대응표본 t검정을 실시하여 유용성을 검증하였다. 평가 결과, 서비스에 대한 만족도의 차이가 통계적으로 의미가 있음을 증명하였고 높은 만족도를 보임을 확인하였다. 따라서 본 연구 결과를 활용하면 시장성 증대와 고부가 가치를 창출할 수 있을 것으로 기대하며 다양한 응용 분야에 활용이 가능하다.
With the development of ubiquitous computing and the construction of infrastructure for one-to-one personalized services, the importance of context-aware services based on user's situation and environment is being spotlighted. The smart home technology connects real space and virtual space, and converts situations in reality into information in a virtual space, and provides user-oriented intelligent services using this information. In this paper, we proposed the discovery of the behavior sequence pattern using the mining in the smart home. We discovered the behavior sequence pattern by using mining to add time variation to the association rule between locations that occur in location transactions. We can predict the path or behavior of user according to the recognized time sequence and provide services accordingly. To evaluate the performance of behavior consequence pattern using mining, we conducted sample t-tests so as to verify usefulness. This evaluation found that the difference of satisfaction by service was statistically meaningful, and showed high satisfaction.