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SOME CONVEX PROPERTIES IN BANACH SPACES
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ABSTRACT. In this paper, we study property (B2) and property (D7) and their
implications.
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1. Introduction

Let (X, |- |]) be a real Banach space and X* the dual space of X. By Bx and
Sx, we denote the closed unit ball and the unit sphere of X, respectively. For
any subset A of X by co(A)(co(A)) we denote the convex hull (closed convex
hull) of A

(X, ]I |} is said to be uniformly convex (UC) if for all € > 0, there exists a
§ > 0 such that for z, y € Bx with ||z —yl| > ¢,

<1-4.
2

Hl(ﬂy)

A Banach space is said to have Banach-Saks property (BS) if any bounded
sequence in the space admits a subsequence whose arithmetic means converges
in norm. S. Kakutani [5] showed that Uniform convexity implies Banach-Saks
property. And T. Nishiura and D. Waterman [8] proved that Banach-Saks prop-
erty implies reflexivity in Banach spaces.

For a sequence (z,) in X, we let

sep(zn) = inf{||zn = Tm| : n # m}.
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For any subset C, we denote by a(C) its Kuratowski measure of non-compactness,
i.e., the infimum of such ¢ > 0 for which there is a covering of C by a finite num-
ber of sets of diameter less than e.

For any = ¢ By, the drop determined by z is the set

D(z,Bx) = co({:c} U Bx)

Rolewicz [9] has defined property (3). A Banach space X is said to have
property () if, for any € > 0, there exists § > 0 such that

a(D(m,Bx)\Bx) <e

whenever 1 < |lz]] < 1+ 4.

The following result is found in [6]. A Banach space X has property (8) if
and only if for every € > 0, there exists d > 0 such that for each element £ € By
and each sequence (z,) € Bx with sep(z,) > €, there is k € N such that

T+ Tk

<1-34.

2. Property (B;) and property (D)

We start with the following definition.

Definition 1. A Banach space X have property (Bs) if there exists a number
6 > 0 such that for z;,zs € By,
1 1
'mf{ §(x1+x2) ,‘ }51—5

3 (@1 —22)
We can easily see that uniformly convexity implies property (Bz2). The con-
verse is not true [4]. A. Brunel and L. Sucheston [1] show that property (Bz)
implies Banach-Saks property. The converse is not true [3].
We get the following strict implications.

(UC) = property (Bz) = (BS) (1)

Definition 2. A Banach space X is said to have property (D7) if it is reflexive
and there exists a number 0 < o < 1 such that for a weakly null sequence (z,)
in By, there exist n; < ny with

<a.

-
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We can see that Uniformly convexity implies property (Ds).

Proposition 3. If X is uniformly convez, then it has property (Dz).
Proof. Suppose that X is uniformly convex. Then for all 0 < € < 2, there exists
0 < &(e) < 1 such that for z,y € By if %Hw +yl| >1-4(e), lz—yll <e

Since if € T 2, then 6(¢) T 1, there exists 0 < €9 < 2 such that d(eg) > % Take
6= max{g —~ &(eo), %’-} Then 0 < < 1.

We show that for a weakly null sequence (z,) in By, there exists n1 < ng

such that %me — Tn, || 8.
Let (z,,) be a weakly null sequence in Bx. If ||z1] < 2(1 — d(¢o)),

Sl — 22l < 2 (ol + )
< % (2(1 - 8(eo)) + 1)
= g - 5(60) < 6.

Suppose that ||z1]| > 2(1—6(eg)). Then there exists N € N such that ||z, +z,]| >
2(1 — 8(eo)). (Indeed, if ||z1 + zn|| < 2(1 — 8(eo)) for all n € N, then

2(1 - &(e0)) < fJan|l = | su”pllim lz* (21 + 24|
z*|=1 "
< sup limsup ||z*|||lz1 + zn)||
x* ]:1 n

= limsup 21 + 2)]
n

< 2(1 = d(eo))-
We get the contradiction.) Since X is uniformly convex,
lz1 — zn|| < €0 < 26.
This completes the proof. O

We consider the converse of Proposition 3. The implication of Proposition 3
is strict.
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Example 4. There exists a non-uniformly convex Banach space with property
(Dg). Consider (R?,|| - |lco). Let z = (1,1) and y = (1,0). Then ||z|joo =

1
lylloo =1 and ||z — ylloo = 1. But -2-||:v+y||°o = 1. This means that (R?, || - ||cc)

is not uniformly convex. We show that (R?, | - |lc) has property (D2). Since
(R2,}] - |loo) is a finite dimensional Banach space, it is reflexive. Take a = 3
Let z,, = (an,bn) be a weakly null sequence in Bz,|.|.)- Since (R?, ]| [loo) is

a finite dimensional Banach space, a, — 0 and b, — 0. It is easy to show that
1

there exist n; < ng such that 5“%1 — Zn,|| < a. This means that (R2, | + ||co)

has property (D).

A Banach space X is said to have weak Banach-Saks property if every weakly
null sequence (z,) in X admits a subsequence whose arithmetic means converges
in norm.

The following definition and theorem are found in {3].

Definition 5. A Banach space X is said to have alternate signs weak Banach-
Saks property if every weakly null sequence (x,,) in X there exists a subsequence
n

(z1,) of (z») and a sequence (e,) of {1} such that (1/n) Zeix; converges in
norm. =

Theorem 6. A Banach space has weak Banach-Saks property if and only if it
has alternate signs weak Banach-Saks property.

Banach spaces with property (D;) have alternate Banach-Saks property.

Theorem 7. If X has property (D2), it has alternate signs weak Banach-Saks
property (hence weak Banach-Saks property).

Proof. Suppose that X has property (D;). Then there exists 0 < a < 1 such
that for all weakly null sequence (z,) in By, there exist n; < np with

1

P (xnl - -'L'ng)

3 < a.

Suppose (z,) is a weakly null sequence in X. Without loss of generality, we may
assume that ||z, || < 1. Then there exist n; < ng such that

1
'2'”‘77"1 — Tn, ” <a

Since (Zn )n>n, is weakly null and ||z, || < 1 for n > ng, there exist (n2 <)nz < n4
such that

1
Ellxna — &ny ” <a
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Continue this process, we obtain a subsequence (z,,, ) for which givenany k ¢ N

1
5“‘77712::—1 ™ Tngg “ <a.

Now, using Kakutani’s result [5], we conclude that there exists a subsequence
(1) of (z) such that

n

1 i+1
2 20

-0 as — 00,

This means that X has alternate weak Banach-Saks property (hence weak Banach-
Saks property). 0

Since weak Banach-Saks property is equivalent to Banach-Saks property in
reflexive Banach spaces, we get the following.

Corollary 8. If X has property (D), then it has Banach-Saks property.

We consider the converse of Corollary 8. The implication of Corollary 8 is
strict.

Example 9. There exists a Banach space with Banach-Saks property which
has no property (D;). The following is found in [2]. For z = (z,) € l, define
sequences z+ and z~ as follows:

(z*)n = sup{zn,0} and (z7), = sup{—z,,0}

Denote the Iz norm by || - [|l2. Let l2; denote the set of elements of l; with the
norm

lzllon = lla™ ll2 + Iz [l2-

It is easy to show that Iy is equivalent to I3 {2]. Since Banach-Saks property
is isomorphic invariant and I, has Banach-Saks property, /3 has Banach-Saks
property.,
Since lz,; is equivalent to I, the sequence (e,) of usual unit vectors is weakly
null in Iy ;. Since
flen — emll21 =2 for n #m,

l3,1 has no property (Dz).

By Proposition 3, Example 4, Corollary 8 and Example 9, we get the following
strict implications.

(UC) = property (D3) = (BS) (2)
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By (1), (2), it is natural to consider the relation of Property (Bz) and (D3).

3. The relation of property (B2) and (D)

A Banach space X is said to be weakly orthogonal if every weakly null se-
quence (z,) in X satisfies

nlingo |zn + z|| — llzn — .7:”| =0 for all z€ X

Proposition 10. Let X be a weakly orthogonal Banach space. If X has property
(B2), then it has property (Da).

Proof. Suppose that X has property (Bz). Then there exists § > 0 such that
for z,y € By,

ffersf ool -4

Take o =1— %. Let (z,) be a weakly null sequence in Bx. We show that there
exists ny < ng such that

<oa.

1
” §(xn1 - znz)

Since X is weakly orthogonal, there exists N € N such that if n > N

[I2n + 21 = 120 = 311l| < 8
Since
lex — 21| <inf{llzn + 21|}, lzn — 21|} + 6,
1 1 1 1
z - < i - b - Z
“2(:1:1\,- )| < xnf{Hz(xN-Hvl) ,Hz(xN z1) }+ 26
<1-6+ 16 =a.
2
This completes the proof. 0

We need the following lemma.
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Lemma 11. Let z,, = € X. If (z,) is weakly null and ||z|| > «, for some
a € Rt then there exists a subsequence (Tn,,) of (zn) such that ||z — zn,. || >
for allm e N,

Proof. The proof is by contradiction. Assume the assertion were false ; ||z —
Zn|l < o except finite n. Then

a<|zl|= sup |z*(z)|
flz*fi=1
= sup lim |z*(z — z,)]

fla*|=1"7%
< sup limsup|z*||||z — znl|
flz*l|=1 =
= limsup |lz — z.|| € o
n
We get the contradiction. a
Property (3) implies property (D3).
Theorem 12. If X has property (83), then it has property (D2).

Proof. Suppose that X have property (3). Then there exists § > 0 such that
for z,z, € Bx with sep(z») > 1,

T+ Tm

lsl—& for some m e N, (3)

Let 6 = max {3,1—6}. Then 0 <8 < 1. Let (z,) be a weakly null sequence in
Bx. We show that there exist n; < ny such that

xnl - an

<
5 0

1
If there exists NV € N such that [jzn]| < 2

IN —IN41 <l(l+1>:§<9
150

2 —2\2

1 1
Suppose that ||z,] > 3 for all n € N. Let z,, = z2. Since ||z, || > 3 there

exists a subsequence (mg)) of (n)n>n, such that

2, — 2z > for alln € N by Lemma 11

1
2
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1
Let z,, = xgl). Then |Zn, — Zn,| > 7 Continue this process, we get a
1
subsequence (Z,,) of (z,) with sep(z,,) > 3 By (3), there exists m € N such
that
T1 — Tm -1+ I,
=||———{<1-6<0.
e U
This completes the proof. O

We need the following lemma.

Lemma 13 [7]. Let (Y, |-]|) be a Banach space with basis (e; : ¢ € I) (unconditional
if I is noncountable) and such that, for every finite subset J of I,

if 0< |aj| £B;,5€J, then Zajej < Z'Bjej .
jeJ jeJ
Let (X;,1 € I) be a family of finite dimensional Banach space. Let

Z = {(wi)ig e [IX:i: D llmille: € Y}

el el

Y- lizilles

iel

equipped with the norm ||(z:)icr|| = . Then, if (Y, ||-|l) has property

(8), (Z, - II) has property (B), too.

There exist a Banach space with property (D) which have no property (B>).

Example 14. Let

m . m .
7z = {(.’L‘l) € HR“ . Z ”:L‘i"ooei € 12, T; € Rz}

i=1 i=1

o0

equipped with the norm [|(z;)|| = Z flzi|lcsl| where (e,) is usual unit vector

i=1
basis of l;. Then Z has property () by Lemlia 13. By Theorem 12, it has
property (D3).

We prove that Z has no property (Bs). It suffices to show that for alln € N
there exist z(!), z(?) € Z such that ||z®)|| =1, k= 1,2 and

o {2722 -2
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Define L1 L1
(1)
z = 0) =y = | _'7——"70 )0’0’0,07"'
(7 7) (5 70) 0000)
and 1 1 1 1
@ = 0,<'—a_—'>1(_s_'"—10)a 0,0,0,0,"')-
= (0(5-) (75-70) 0000
Then
2 = Jo@ =1 and o) + 5@ = o) - 2@ = 2.
This implies that Z has no property (Bz). O

Finally, we investigate the question whether property (B2) implies (D;) or
not.

Example 15. There exists a Banach space with property (B2) which has no
property (D3). g1 is uniformly non-square [2]. This means that l; ; has property
(Bz). l2,1 has no property (D3), by Example 9
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