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OPTIMIZATION OF PARAMETERS IN
MATHEMATICAL MODELS OF BIOLOGICAL SYSTEMS

S. M. CHoo* AND Y. H. Kim

ABSTRACT. Under pathological stress stimuli, dynamics of a biological system
can be changed by alteration of several components such as functional proteins,
ultimately leading to disease state. These dynamics in disease state can be mod-
eled using differential equations in which kinetic or system parameters can be
obtained from experimental data. One of the most effective ways to restore a
particular disease state of biology system (i.e., cell, organ and organism) into the
normal state makes optimization of the altered components usually represented
by system parameters in the differential equations. There has been no such ap-
proach as far as we know. Here we show this approach with a cardiac hypertrophy
model in which we obtain the existence of the optimal parameters and construct
an optimal system which can be used to find the optimal parameters.
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1. Introduction

Under non-stress condition, biological processes at the level of gene, molecule
or physiology can be described by ordinary differential equations with nominal
values of parameters that are obtained from experiments({1],[3],[6]-[8],{10]). But
if a biological system is under pathological stimuli such as hypertension, ischemic
heart disease and cardiomyopathy, values of some parameters are changed de-
pending on a specific disease; thereby system dynamics are also changed to
another one no longer normal. In this case, to restore the undesired (diseased)
responses into the nominal ones, we should consider the control of the param-
eters altered by stress condition but generally changing all these parameters is
not physical or pharmacological approach to treat disease([2],[4],[11]). Thus, we
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must determine how to obtain the desired profiles by changing only a portion of
the altered parameters.

We will use the optimization method that is the way to get the desired profiles
and optimal values of some parameters in general biological systems. Although
there are a large number of studies based on optimization, there are few studies
on this topic as far as we know. Joshi[9] studied on the mathematical model
describing the interaction of HIV and T-cells by using optimization. Consider
the differential equations

2:(t) = fi(y(t),u(t)), 1<i<n and 0<t<T (1.1)
with initial conditions
%i(0) = o} (12)
where n,m are natural numbers, the state vector y = (y1,- -+ ,¥yn) with state
variables y;’s and the control vector 4 = (uy,- - - , Um) with control terms U 's(1 <
j <m).
The objective functional is defined as
T D) m
s = [ S {a) -u} + 3 uko a (1)
el j=1

where 7 is an index subset of {i|1 < i < n} and § is the index function of
interest such as the profile of action potential or calcium concentration under
non-stress condition.

The aim of this study is to find an optimal control vector u* = (u},--- ,u},)
satisfying

T 2 m
s =mip [ Y {a -u@} +Yd0e 09
ve€UJo 4er i=1

where U is a control set.

In this paper, a general type of differential equations for describing dynamics
of biological systems is considered. In section 2, we introduce the theorem used
to prove the existence of optimal control terms and an example which satisfy
the conditions of the theorem. In section 3, we construct an optimal system
corresponding the control problem (1.1)-(1.4) which is used to find the optimal
control terms. And we obtain the uniqueness of the optimal system.

2. Existence of optimal control terms

In order to construct the existence theorem of optimal control terms, we
recall the theorem in Fleming and Rishel[5] which is used to prove the exis-
tence of optimal control terms. Consider a control problem with system equa-
tions £ = g(z(t),u(t)),to <t < t1,u € U and objective functional J(u) =
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t1
L(x(t), u(t)) dt, where the vector valued function g is defined on D. Let |- ||

to
be the L?-norm. Then the following theorem holds.

Theorem 2.1. Assume that for some positive constant Ci(1 = 1,2,3,4), v > 1,
function g;(i = 1,2), and all z,z1,20 € D, u € U,
(a) g and L are continuous;
) lg(z, w)ll < Ci(1+ |lofl + ||ull);
) lg(z1,v) — g(z2, u)|| < Callz1 — zaf|(1+ Jjul));
) The set of controls and corresponding state variables is non-empty;
(€) The control set U is convez and closed;
(f) g(z,u) = q1(z) + g2(2)u;
(g) L(z,-) is convez on U;
(h) L(z,u) 2 Callul|” - Cq.

Then there exists an optimal control vector u* minimizing J(u) on U.

(b
(c
(d

Note that gz(z)u means the linear function in u and has values in the codomain
of the function go.
We assume that

0<u;(t) <aj,  fy(d),u(t)) = a(y(t)) + Bly(t))ult) (2.1)

where a;(1 < j < m) are positive constant and «, § are continuous functions
satisfying the Lipschitz condition in every closed bounded subset of R*. The
assumption (2.1) is satisfied in many mathematical models of biological systems.
Under the assumption (2.1), the control problem (1.1)-(1.2) satisfies (a),(d)-(h)
of Theorem 2.1 with ¢ = f, z = y, g1 = o and go = 3. Thus we obtain
the following existence theorem of the optimal control vector to the problem

(1.1)~(1.3).

Theorem 2.2. Assume that the condition (2.1) and the followings hold.
DU ={u= (w1, ,um)) | uj is measumble, 0 < uj(t) £ aj, t €
[0,T),1<j<m}.
(if) The solutions of (1.1)-(1.2) are bounded. That is, there exists a bounded
subset Dy of R™ containing all the solutions of (1.1).
(iii) f is defined on Dy and satisfies (b)-(c) of Theorem 2.1.
Then there exists an optimal control vector u* minimizing J(u) on U.

Conventional equations for biochemical reactions are based on the law of mass
action. Thus there are a large number of mathematical models of biological sys-
tems satisfying mass conservation which makes the solutions of these equations
bounded in finite time intervals. In addition, the nonlinear tirms of f are usu-
[250)

for constants k
k+ yh

ally products of state variables or Hill-types like ¥y or
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and h. The boundedness of solutions and this nonlinear form of (2.1) make f
satisfy (b)—(c) of Theorem 1 on a bounded domain containing all the values of
the solutions. For example, the following mathematical equations describe the
calcineurin-NFAT (nuclear factor of activated T-cells) signaling pathway which
plays crucial roles in development of cardiac hypertrophy, in particular, under the
pathological stress stimuli that mediate elevation of intracellular calcium([12]).
Cardiac hypertrophy is a thickening of the heart muscle (myocardium) which
results in a decrease in size of the chamber of the heart, including the left and
right ventricles:

dCaNpree] _ 1 1Cal reel|Ca*] + ka[CaNeed], 232)
dt d

d[CaNeomp] [MCIP)® [CaNge:]®

T = ka2[CGNact] ktlg T [MCIP]IS ka2 [CaNco"w] k§n3 + [CaNact]s,

[CaNiot] = [CalNgree] + [CaNact] + [CaNcomp),
dNFAT.)  ka[NFATE ][CaNau)®
dt K, 4 [CaNaa)®
+ lute[NF AT e,

- (lctu + krl)[NFATcyt]

d[NF AT ] ke2|GPP|[NF AT )
—_— = ety c — byte NFATnuc - ]
dt betu N F ATeyt] = butel ) kmz + [NFAT ]

[NFAT,t) = [N FATfyt] + [NFAT ) + [NFAT ),

dMCIP] _  v(NFATmu]+cof)'" (CaNou] [MCIP)'
dt KL+ (INFATpue] 4 cof)l? o2t ety s TV C TIPS
[CaNact]S
+ k42[CaNcomp] By T [CaNoF kaegMCIP).

Here the state variables are [CaNfree), [CaNcomp), [NFATcys], [NF AT pucl,
[MCIP]. And [CaNfree), [CaNeomp), [CaNact), [CaNior] are the concentra-
tions of free, complex, active and total calcineurin, respectively, and [N F ATcy],
[NF ATy ), [INFAT;,], INF AT are the concentrations of cytoplasmic, nu-
clear, phosphorylated cytoplasmic, and total NFAT, respectively, [MCIP)] is
the concentration of MCIP(Modulatory calcineurin-interacting protein), and
[CaNyot), [NF ATyo) are positive constants. For more details, refer to [12].

In this example, the index function can be [NF AT ] which is the profile of
the concentration of the protein NFAT in the nucleus under non-stress condition
because the nuclear NFAT can incur a hypertrophic response. Then the control
terms can be I, (import rate constant of NFAT from cytoplasm to nucleus)
and lyc(export rate constant of NFAT from nucleus to cytoplasm). Using the
existence theorem of solutions of ODEs, the equations (2.2) and objective func-
tional (1.3) satisfy the conditions in Theorem 2.2 so that there exists an optimal
control vector.
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3. Optimal system

Without loss of generality, we assume I = {1} and m = 2 in (1.1)-(1.4).
To find the optimal control vector u* and its corresponding state vector y*,

we introduce another state variables called adjoint variables which satisfy some
ODEs.

Theorem 3.1. Letu* and y* be the optimal control vector and its corresponding
solutions, respectively. Then there ezist adjoint variables A;(1 < ¢ < n) satisfying
the optimal system

Ja(t) = ~2{(0) - (9} - Z,\(t%@féiy)ﬂfw,
1

6fz (8),v @) ,
A t) Ai(t —~—-—~—-— <ji<
i(t) E : By;
with the transversality condition

AM(T)=0,1<i<mn

And the optimal control terms u} and uj satisfy

up(t) = Z)\(t 6f’ )w () L k=12

Proof. Using new functions X;(t}(1 < ¢ < n) with the transversality condition
Xi(T) = 0 and integration by parts, we obtain,

T 2 n
- /0 ) —n@P+ w20 + 3 MO wE), u(t) - 5@t o
j:l =1 .

T 2 n n
= /0 {Ht) —n@®OP + 3wkt + Y MO fH@®,u@) + D Mu(t)dt
j=1 i=1 i=1

n

+ Z /\i(O)y?.

i=1

Since y;(t) varies depending on the values of u, replace y;(t) in (3.1) with y;(¢, u)

and apply g—] (u* + zh)|z=0 = O for all k in an open ball centered at 0 € R™.
Then we can obtain the desired result. O
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Using Theorem 3.1, we get the optimal system and optimal control terms of
(2.2):

V. — 7 * 2+ _ (y5)16 _ * cact
M = =20 = i) = M — karlCa™] ~ka ) — Ao { ~haa gz s kaed203
ki, + (45)
act ( )16 act
— )\3kcl{NFAT yt]‘s /\5 kazm + kd2y2(5 y

: (y5)'® ( (z*)° ¢
Sz = +Arkas — A {—kag—-_;— ~ kay [ + 308
: e kip + (y5)' ko + (2%)8

_ act __ __Lyf’.)__ _—(iL 565
/\Skcl[NFA yt]6 )\5 {kag k%s (y5)15 + kd2 (kfn(i + (z*)5 + 6 )

A3 = —A kl)s——-u*—k — At
3 - 3 clk?nl+(z*)5 1 rl 4 U],

. (z~)5 k

= hs [kttt u} | = M { —u3 — kea{GPP}—"2 L 1 Asvés,
A A3 (k 1k§nl NPT + ug 4 2| ](km2 ) + As5vd4
As = —Aoka2z" 05 + As(ka22"05 + Kaeg)

and
ul = —(=As+ A)3/2, us=—(A3— A)yi/2

where

= [CaNfree] Y2 = [CaNcomp] Yys = [NFATcyt],
Yo = [NFAT,WC] ys = [MCIP), z = [CaN,t),

5 1 17 16
5k 1 3), 54 7knuc(y4 + COf)

(sact
{k2lc + (ui + cof)17}2

S )5}2(
5 = (95)15{16kth 95)15}
° (k5 + (y5)5)2

Following the idea of {9], we obtain the uniqueness theorem of the optimal
system.

Theorem 3.2. Assume that f satisfies the conditions of Theorem 2.2 and
0fi(, u(t))
9y;
Then bounded solutions of the optimal system are unique for a sufficiently small

T.

(1 €14,j < n) satisfies the Lipschitz condition in the domain Dy.

Proof. Suppose p; and z} (1 <1 < n) are also the solutions of the optimal system
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in Theorem 3.1 with optimal control terms v*. Then we obtain

M(E) = in(t) = —2{ (1) - 41 ()}

n

Ofi(y*(£), u™(t) . Of:(z*(t),v*(t))
_g{&( )—5141—_“’“)_”__&1 },
o(t) = igt) = —;{/\1( O ) 0O O)),
2<j<n,

U (1) — 2(t) = fiy" (1), ™ (1) — fi(z"(1),07(F), 1<sism,

where u}(t) = — - Z)"( )%—M and

=1 Ouk

k

1¢ 2@ O) )
—§§ 611 o k=12

Note that 21" @ u"(t)) _ 8fil2"(t),v"(t))
au,- 3Uj
Taking yi(t) = e§i(t), z(t) = e®2(t), M(t) = e *tA\i(t) and wi(t) =
e~**f1;(t) for a constant s, we obtain

since f is linear in wu.

— D) = i (©) + s{Aa ) ~ (1)) (3:2)
_ —2628t{z1(t) yl } Z{ 3f1( éy)l *(t)) —ﬁi(t)afi(z*gz);v*(t))},
= {30 - B0} + {50 - 5 0) (33)
O[5 2O OWW) 8RR, (1)

- {A,(t) 5y () L }

Bi () — 55 (0) + s{@1 (1) - (1)) (34)

= e Al 0" (@) — (2 0,0 ©)].

Multiplying (3.2), (3.3) and (3.4) by A (£)— 1 (), A, (t) — 25 () and 2 (t) — 27 (t),
respectively, integrating the results, and using the boundedness of A;, ui, ¥}, 2]
and the Cauchy-Schwarz inequality, we obtain for some constant C; and Cap,
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b [ 60 - 0P+ (510 - 20
<(@+0en) 3 [ {lo-io) + (o - 50}

It follow from the just above inequality that for 1 < < n,

T .
(5= 01— Coet™) [ () =0 + {53(6) - () 't <O

Choosing s such that s — C; — C2e2*T > 0 for sufficiently small T', the equalities
Ai = p; and y; = z7 hold. Thus the proof is complete. [J

Remark 1. We can take the proposed approach to finding optimal system for
delay differential equations: Consider the following delay differential equations

yi(t) = fi(y(t),yr(t),u(t)), 1<i<n and 0<t<T
with initial conditions
vi(t) =gi(t) —-m<t<0

and the object functional
T 2
= [ o0 -nor+ Yo e
i=1

Here y-(t) = (y1(t —71),- -+ , yn(t — ™)) and u(t) = (ur(t), u2(t))-
Then the optimal control terms u] and uj satisfy

(0 = - Z* UL OLEOLD |,

subject to
U5 () = fu(y" (8), yr (8), w" (2)),
Ait) = —2{g(t) ~ 91 (t)}6ar

- afj (y* (t), y:(t)» u* (t))
By {,\,- (t) 2

Afi(y* (t+ 1), ¥y (t + ), u*(t + 7)) }
ayr,i

j=1

+ ,Uq;(t)/\j (t + Ti)
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with the initial and transversality conditions
yi(t)=gi(t)y M(T)=0, -1,<t<0,1<i<n

1, (i=1)
0, otherwise

1, (t S T - T,‘)
0, otherwise

where ¥ ; )= Y5 (t—Tj), b= { and p;(t) = {

Remark 2. Studying numerical schemes for solving the optimal system and
applying these resuits to specific biological systems are future studies.
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