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A COMPUTATIONAL EXPLORATION OF THE CHINESE
REMAINDER THEOREM

AMOS O. OLAGUNJU

ABSTRACT. Real life problems can be expressed as a congruence modulus n
and split into a system of congruence equations in modulus factors of n. A
system of congruence equations can be combined into a congruence equa-
tion under certain conditions. This paper uniquely presents and critically
reviews the generalized Chinese Remainder Theorem (CRT) for combining
systems of congruence equations into single congruence equations. Sequen-
tial and parallel implementation strategies of the generic CRT are outlined.
A variety of unique applications of the CRT are discussed.
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1. Introduction

The Chinese Remainder Theorem (CRT) is a valuable mathematical algo-
rithm invented in ancient China. The first problem related to the CRT appeared
in the classic book, ”Sun Tzu Suan Ching” or "Master Sun’s Mathematical Man-
ual” of Sun Zi. There is no consensus about the publication date of the problem
and the book. There are experts who allege that Sun Zi constructed the problem
in the 4th century [6]. Other experts argue that the book, “Sunzi Suanjing” was
published between 280 A.D and 473 A.D because the Chinese tax by family unit
“hu diao” expressed in terms of silk floss “mian” was established in 280A.D, and
the measuring scale between “chi” and “duan” was modified in 473 A.D (5], and
Sun Zi used old Chinese scale [2, 3]. The book, “Sunzi Suanjing” introduces
the basic mathematical tables and operations. In particular, the book provides
the computation process with rod numerals and the famous Chinese remainder
problem.
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The first published CRT problem by Sun Zi focused on the astonishing ques-
tion: what number can be divided separately by 3, 5 and 7 to obtain 2, 3, and
2 respectively as the remainders? Sun Zi obtained the solution to this problem
by computing the (a) multiples 70, 21, and 15 of (5 x 7), (3 x 7) and (3 x 5)
respectively, (b) sum of (2 x 70, 3 x 21, 2 x 15) equals 233, and (c) smallest pos-
itive number by eliminating multiples of (3 x 5 x 7) from 233 to obtain 23. Let
“mod” be the operator that produces the remainder of a division between two
integers, and “=" be the congruence operator such that, y = n mod m implies y
mod m = n mod m. That is, y is congruent to n modulus m implies that both
y and n produce the same integer remainder when each is divided by m. Thus,
the properties implicit in Sun Zi’s solution can be presented as:

70 =1 mod 3 =0 mod 5 =0 mod 7,

21 =1mod 5=0mod 3 =0 mod?7,

15=1mod 7 = 0 mod 3 = 0 mod 5, and
233 = 2x 70 + 3 x 21 + 2 x 15 satisfies each of the congruence equations.
Moreover, any multiple of 105 = 3 x 5 x 7 is divisible by 3, 5 and 7. Consequently,
210 = 2 x 105 is subtracted from 233 to obtain 23 as the smallest positive integer.

The dramatic story from Brahma-Sphuta-Siddhanta created by Brahmagupta
[4] is an astounding puzzle allied with the CRT. A horse stepped on and broke
a basket full of eggs at a market. The horse rider offered to compensate the
old woman and asked her for the number of eggs. Lacking memory, she only
remembered that, the time she obtained two eggs out at a time from the basket,
one egg was left; she recalled the same one egg was left when she removed three,
four, five and six eggs at a time; however the basket was empty when she picked
out seven eggs each time. What is the smallest possible number of eggs she had?
The 301 eggs can be derived from the system of congruence equations y = 1
moed2=1mod3=1mod4=1mod5=1mod6=0mod?7.

The question naturally arises on how to solve the CRT problems using modern
mathematics notation. Consider a number of jolly friends who plan to celebrate
next Christmas at Libby Hill Seafood restaurant. Guests at the restaurant are
seated by a waitress in rows of chairs with diner tables of various sizes. When
the waitress decides to sit three to a row, one friend is left over; when she decides
to sit five to a row, two friends are left over; when she decides to sit seven or
eleven to a row, three friends are left over. How many jolly friends are in the
party? Suppose y is the number of jolly friends in the party. The problem of
determining the number of jolly friends can be expressed by the following four
congruence equations.

y=1 mod 3 (1)
y=2 mod 5 (2)
y=3 mod 7 (3)
y=3 mod 11 (4)

Clearly, the congruence equations (1), (2), (3) and (4) must be solved simul-
taneously to obtain the single value that satisfies each equation. The greatest
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common divisor (GCD) of 3 and 5 is 1; thus, 3 and 5 are relatively prime num-
bers. Moreover, by definition of modulus, numbers congruent to 1 mod 3 are
of the form y = 1 + 3k, for integer values k. Substituting this expression into
equation (2) gives:

1 + 3k = 2 mod 5, 3k = 1 mod 5, k = (3-1 mod 5) mod 5, and k = 2.

y =1 + 3k = 7, and the solution to equations (1) and (2) is y = 7 mod 15.
Again, numbers congruent to 7 mod 15 are of the form y = 7 + 15n, for integers
n. Substituting this expression into equation (3) gives:

7+ 15n=3mod 7, 15n = -4 mod 7 = 3 mod 7, n = 3(15-1 mod 7) mod 7
=3(1) mod 7,and n = 3. y = 7 + 15n = 52, and the solution to equations (1),
(2) and (3) is y = 52 mod 105. Again, numbers congruent to 52 mod 105 are of
the form y = 52 + 105m, for integer values m. Substituting this expression into
equation (4) gives:

52 + 105m = 3 mod 11, 105m = -49 mod 11 = 6 mod 11, m = 6(105-1 mod
11) mod 11 = 6 (2) mod 11, and m =1. y = 52 + 105m = 157, and the solution
to equations (1), (2), (3) and (4) is y = 157 mod 1155. Note that 157 = 1 mod
3, 157 = 2 mod 5, 157 = 3 mod 7, and 157 = 3 mod 11. Thus, the smallest
number of jolly friends in the party is 157.

2. The Chinese remainder theorem

Theorem 1. Let my, m, be relatively prime integers. Given integersai, ag
then y = c¢mod mimy is the single solution to the simultaneous congruence
equations y = aymodmy and y = ap mod my, where ¢ = a1 + ml(ml‘1
mod mz)(a2 - (),1).

Proof. By definition, m; and m; are relatively prime impliesGCD(m,, m,) =
1, and by the extended Euclidean algorithm there exists integers p, q such

that mup + mog = 1. Thenmip = 1modmg, and mag = 1mod my.
Lety = agrmp + aimag.
Then y = aymp = azmod miandy = aymaq = a; mod mg, and so

there is a solution. Suppose z is another solution; theny = zmod m; andy =
z mod ma, so that y-z is a multiple of both m; and my . Let w = y-z. By
definition w is a multiple of both m; and mg implies there are integers s, t such
thatw = mys = mot.

Multiply myp + meg = 1 by w to obtain

w o= wmp + wmag = (Mut)mp + (ms)myg = muma(tp + sq).
Therefore, w is a multiple of mims andy = 2 mod mymg, and any two so-
lutions y to the system of congruence equations are congruent mod mimsg .
Consequently,y = cmod mimgy, and ¢ = a3 + ml(mf1 mod m2)(a, — a)
is the single solution to y = ay mod m; and y = az mod ma. O

Theorem 2. Let my, m,,...,m,be relatively prime integers. Given integers
ay, Gs,. .. ,0, then the congruence equationsy = a; (mod m,),1 < i < n,
has ezactly one solution y = d (mod m;my ... my), where
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d = py, py= a1, p; = pjy + [Ima((IImn)"" mod m;)a; —p;_1), j =
1 to n, and the product [] mnis computed from 1 to j -1.

Proof. Let CR(N) denote the statement y = a; (mod m,;) = az (mod m,) =

.. = an (modm,) has exactly one solution y = d (mod m;my ... m,).We

need to show that CR(N) is true forall N > 1.
N=1, to prove CR(1) : i.e.,, y = a1 (mod m,) has a single solution. Clearly,
y (mod my) = a1 (mod ml),and eithery = a,, or y = a; + myt for integers
t that produce the same single solution in modulus m1, so the statement is true.
N=2, to prove CR(2): i.e.,, y = a3 modm1 = ap mod my has exactly one
solution y = d (mod m;m3). The proof is provided in Theorem 1, and the
statement is true.

k > 1 and CR(k) the induction hypothesis is y = a3 (modm,) = a
(modm,) = ... = ax (mod m,) has exactly one solution y = d (mod m,m;
... mg), where d = p,, p; = a1,

pj = pj—1+[Imn((IImn)~' mod m;)(a;—pj-1), j = 1tok, and the product

[Ime is computed over h = 1 to j. For the induction step CR(k+1), y =
a1 (modm;) = az (modm,) = ... = ax (modmy) = agy1 (mod my,,)
has exactly one solution y = d (mod m;my ... mgmey1), whered = p,.q, Py
= ai,

p; = pioy + TIma((TTmn) ™ modmy)(a; — p;_y), § = 1 to kt1, the

product []my is computed over h = 1 to j, and the proof stems from

y = a1(modmy) = az(modmz) = ... = ag(modmi) = ak+1(modmy + 1)

= (y = a1(modm;) = ag(modmy) = ... = ax(modmy)) = ag41 (modmyy)

= y = d(modmimg...Mk) = ar41(modmis1) (by induction hypothesis)

= y = d(modmyms...mrMi+1 ) (by Theorem 1), where

d = pr + [Ima((Imn) " *modmy + 1)(axs1 —pr),h =1 to k 0

3. Algorithms for Implementing the CRT

The CRT algorithm entails calculating the inverse of numbers in modulus
arithmetic. Given congruence equations whose constant and modulus coefficients
are stored in vectors A and M respectively, the following sequential algorithm
generates the solution to these simultaneous equations by repeatedly invoking the
function “MODINVERSE”. The algorithm uses the temporary variables ¢, al,
a2, ml, m2, n and INV as counter, first number, second number, first modulus,
second modulus, number of congruence equations, and the inverse of m1 and m?2
respectively.

3.1. Sequential CRT algorithm

START
Initialize c =1, al = Alc), mi = M[c];
WHILE (c < n) DO
BEGIN ¢ = ¢ + 1;
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a2 = Alcl;
m2 = Mlc];
INV = MODINVERSE (mi, m2);

al
mi

[}

al + (m1 * INV * (a2 —- al));
ml * m2;

END;
al = al modulus ml;
PRINT al, mi;

STOP

MODINVERSE (mi, m2)
BEGIN
Initialize t0 = 1, t1 = 0, m = m2;
WHILE (m2 7 0) DO
BEGIN
q = Floor (mi/m2);
t2 = ml-(g*m2);
t3 = t0 - (q*tl);

t0 = ti;
t1 = t3;
ml = m2;
m2 = t2;
END

IF (t0 < 0) SET tO = m + tO0;
RUTURN MODINVERSE=tO;
END
Consider the congruence equationsy = 1 mod 3 =1mod4=1mod 5=0
mod 7. These equations are stored in vectors A and M, and here is the trace of
execution of the algorithm.

C A M al ml a2 m2 1INV

1 3 1 4 3-1mod 4 =3
1 12 1 5 12-1 mod 5 = 3
1 60 0 7 60-1mod?7 =2

o wN -
QO s e
~N oW

The final values are: al = 1 + 60(2(0-1)) = -119, m1 = 60(7) = 420, al mod
ml = -119 mod 420 = 301. The solution to the congruence equations is y = 301
mod 420.

The sequential CRT algorithm uses instructions in succession to manipulate
the elements of vectors A and M, and to compute inverse values. Thus, the
chronological CRT algorithm is inefficient for computing the solution to numer-
ous systems of congruence equations. An efficient algorithm ought to split the
elements of vectors A and M for processing by several processors. Moreover, an
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resourceful algorithm for computing the inverse in modulus arithmetic should
take advantage of concurrent processors.

The parallel CRT algorithm below assumes the existence of multiple proces-
sors. The algorithm is suitable for even and odd numbers of congruence equa-
tions. The number of available processors will determine the partitioning of
parallel computational tasks. In particular, given P processors and N congru-
ence equations, it is important to explore the cases when both P and N are
either odd or even, or one of P and N is odd. However, processors are usually
assigned to computer program segments designed to execute concurrently based
on availability. Thus, the algorithm below illustrates how the sequential CRT
algorithm may be coded for parallel execution.

3.2. Parallel CRT algorithm

START
IF (n mod 2 = 0) THEN
SET s = n/2 +1; \{even n\}
ELSE SET s = (n+1)/2; \{odd n\}
PARBEGIN \{initialize variable\}
cl =1; all = Alc1]; mi11 = M{c1];
c2 = s; a2l = Alc2]; m21 = M[c2];
PAREND;
WHILE (c1 < s) DO
BEGIN \{compute solution using parallel instructions\}
PARBEGIN c1 = cl1 + {1;

c2=c2 +1;
PAREND;
PARBEGIN al12 = Aflc1]; mi2 = M[c1];
A22 = Alc2]; m22 = M[c2];
PAREND;
PARBEGIN

INVi = MODINVERSE (mi11, m12);
INV2 = MODINVERSE (m21, m22);
PAREND;
PARBEGIN
all = all + (m11 * INV1 * (al2 -- all));
a2l = a21 + (m21 * INV2 * (a22 -- a21));

PAREND;
PARBEGIN
mll = mi1 * mi2;
m21 = m21 * m22;
PAREND;
END;
INV = MODINVERSE (mi1, m12);

all = all + (m11*INV*(a22 --all));
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mil = m11*m21;
IF (n mod 2 \ne 0) THEN

BEGIN
INV = MODINVERSE (m1i, M[nl);
all = all + (m11*INV*(A[n] -~ all));
mil = mi1#M[n];
END;

all = all modulus mii;
PRINT all, mil;
STOP

MODINVERSE (m1, m2)
BEGIN \{compute the inverse of ml mod m2 with parallel
instructions\}
PARBEGIN
t0 = 1;
tl = 0;
m = m2;
PAREND;
WHILE (m2 \ne 0) DO
BEGIN
q = Floor (ml1/m2);
PARBEGIN
pl = q*m2;
p2 = gxtl;
PAREND;
PARBEGIN
t2 = m1-(q*m2);
t3 = t0 - (g*t1);
t0 = t1;
PAREND;
PARBEGIN
tl = t3;
ml = m2;
m2 = t2;
PAREND;
END
IF (t0 $<$ 0) SET t0 = m + tO0;
RUTURN MODINVERSE=t0;

it

END

The sequential and parallel CRT algorithms require relatively prime modulo
numbers in vector M. When modulo numbers in equations are not relatively
prime, the equations may be preprocessed without any loss of information. For
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instance, consider y = 1mod 2 = 1mod 3 =1 mod 4 = 1 mod 5 = 1 mod
6 = 0 mod 7. Clearly, 2, 3, 4, 5, 6 and 7 are not relatively prime numbers.
However, 3, 4, 5, and 7 are relatively prime numbers. The information in 1 mod
6 can be derived from 1 mod 3 and 1 mod 2, and the information in 1 mod 2 is
covered in 1 mod 4. Consequently, z =1 mod 3 =1 mod 4 = 1 mod 5 = 0 mod
7 will generate the same solution as y. Accordingly congruence equations that
contain no relatively prime modulo numbers require factoring and combining of
equations.

4. Application of the CRT

The CRT is evolving in new contexts and types of applications notwithstand-
ing its existence for two centuries. The usefulness and applications of the CRT
are apparent in abundant aspects of algorithms and modular computations, par-
ticularly in the theory of codes and cryptography {1]. For example, the CRT can
be used to solve y2 = 133 mod 143 by factoring 143 into a product of primes
(11 x 13) and rewriting the congruence as two equations.

¥2=133 mod 11=1 mod 11 (5)

¥2 =133 mod 13=3 mod 13 (6)

The solutions to equation (5) are y = 1 mod 11 and

y = -1 mod 11 = 10 mod 11.

The solutions to equation (6) are y = 4 mod 13 and

y = -4 mod 13 = 9 mod 13.

The CRT is then used to combine the pairs of congruence equations.

y = 1 mod 11 and y = 4 mod 13 to obtain y = 56 mod 143,

y = 1 mod 11 and y = 9 mod 13 to obtain y = 100 mod 143,

y = 10 mod 11 and y = 4 mod 13 to obtain y = 43 mod 143, and

y = 10 mod 11 and y = 9 mod 13 to obtain y = 87 mod 143.

Many real life problems may be formulated as systems of congruence equations
for investigation via the CRT. The CRT may be creatively used to monitor
inventory at several warehouses of a corporation. Suppose a company has four
warehouses w, X, y, z with different cubit storage spaces. For simplicity, suppose
merchandise items such as boxes of computers or cars of equal sizes are stored in
each warehouse. The CRT is practical for solving the congruence equations below
used to estimate the number of merchandise items, N, in the four warehouses.

N =rl mod w,

N = r2 mod x,

N = r3 mod y, and
N =rd4d modz

where rl, r2, r3, and r4 are the respective numbers of unoccupied cubit storage
spaces in warehouses w, x, y and z. For example, the congruence equations N =
0 mod 12 = 2 mod 13 = 3 mod 25 = 3 mod 37 are solved by the CRT algorithm
to yield 97,544 merchandise items in the four warehouses.
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The CRT may be applied to explore the best use of powder loads for bullets
and artillery of specific gunpowder grains and shell casing sizes. In particular,
consider a weaponry distributor of y rounds of 9mm shell casings, each with
50 grains capacity; z rounds of 7mm rifle casings, each able to hold 71 grains;
and w rounds of 40mm grenade casings, each with 153 grains storage. The
total gunpowder grains may be computed with the CRT algorithm to resolve
the allocation of powder for producing the optimal number of ammunitions.

The CRT may be used in steganography to estimate the optimal amount of
least significant bits data to conceal, or hidden data spread over several doc-
uments or pictures. This requires the knowledge of the total usable space in
each document or picture. The document or picture size may be measured in
kilobytes or megabytes. The maximum data sizes of documents or pictures and
the concealed data sizes might subsequently be used in the CRT algorithm to
derive the amount of stored data.

5. Conclusion

The generalized Chinese Remainder Theorem is exhibited, proved and crit-
ically reviewed. Sequential and parallel algorithms are put forward for imple-
menting the CRT. Efficiency and effectiveness of the algorithms are discussed.
The practical applications of the CRT are expounded. No attempt was made to
present comprehensive applications of the CRT. Nonetheless, this paper may be
useful for understanding the underpinning and applications of the CRT,
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