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FINITE DIFFERENCE SCHEMES FOR
CALCIUM DIFFUSION EQUATIONS

S. M. CHOO

ABSTRACT. Finite difference schemes are considered for a Ca?t diffusion equa-
tions, which discribe Ca?t buffering by using stationary and mobile buffers. Sta-
bility and L® error estimates of approximate solutions for the corresponding
schemes are obtained using the extended Lax-Richtmyer equivalence theorem.
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1. Introduction
We consider the Ca2t buffer reactions in cells

K}
B; + Ca*t 2 CaB;
K

where Ca?? is free Calcium ion, buffer B; is stationary buffer B; or mobile buffer
B, and CaB; represents Ca%* bound to a buffer site. Ca?* concentrations are
buffered in living cells([1],{11]). Wagner and Keizer[13] have described the Ca**
buffering as the following partial differential equations without explicit initial
and boundary conditions.

8lCa™] _ [ *Ca*] _

5t Ca™ 52 kF[Ca®*][B,] + k; [CaB,] 1)
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— k}[Ca®|[B] + kn[CaBm),
OlBn] _ [, &[Bn]

= k},[Ca®*|[Bm] + k7 [CaBn),

ot °m Ba?
0{CaBm] ?[CaBm]  4(r 24 _
5 = Deasn =5 +knlCa®"|[Bm] - k[CaBn);
0[CaB;]

e kf[Ca**|[Bs] — k;[CaBs), z€Q=(0,6),0<t<T.

For the completeness of the modeling, we need one condition about the state
variable [B,]. Assume that the total concentration of the stationary buffer [B]sot
is conserved: for a constant [Bs)iot,

[BS] = [Bs]tot - [CQBS]. (2)
The initial conditions are

[Ca?*)(x,0) = [Ca**]o(z), [Bml(z,0) = [Bm)o(z), 3)
[CaBn)(z,0) = [CaBno(z), [CaB;)(z,0) = [CaB,o(z)

and boundary conditions are
gg—(m,t) =0, ze{0,2},te(0,T) 4)

where u is [Ca?),[Bm), [CaBm] or [CaB,).

There is no analysis of numerical schemes for the Ca?* dynamics such as Ca?*
buffering as far as we know. The studies on the dynamics belong to the area of
electrophysiology, in which almost all systems are described by ordinary differ-
ential equations([2],(6]-(8]]) but recently some systems are modeled by partial
differential equations having temporal and spatial terms([5],{10],{12]). Following
the finite difference approaches in [3]-[4], we can analysis numerical schemes for
the Ca%t buffering.

In this paper, we consider estimates of approximate solutions for finite dif-
ference methods. In Section 2, we introduce the finite difference schemes for
(1)-(4) and show that the finite difference scheme can satisfy the conservation
of the concentration of the mobile buffer. In Sections 3, we briefly recall the
Lax-Richtmyer equivalence theorem and obtain stability and error estimates for
the equation by following the idea in Lopez-Marcos and Sanz-Serna[9] and the
approaches in [3]-[4].

2. Finite difference schemes

Let h = £/M be the uniform step size in the spatial direction for a positive
integer M and Qp, = {x; = thli = -1,0, -+ ,M, M +1}. Let k = T/N denote
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the uniform step size in the temporal direction for a positive integer N. Denote
Vi = V(zi,tp) for t, = nk,n = 10,1, -+ ,N. For a function V" defined on Q,
define the difference operators as for 0 < i < M,

VeV = (Vi = V) ke VP =VaV2y, VIR = V(VoV).
Further, define operators V**# and 8,V" as

VIR = (VP e VR /2 and BV = (V- V) k.

Then the approximate solutions [C]?*1, [M]?T:, [CMPH,[CS]PTH(0 < 4 <
M,0 <n <N —1) for (1)-(4) are defined as solutions of

a(CT; = DyVPCl — kOIS + koS ®)
—EH O M ks lom)t,
au M7 = DoV M —hleH Mt koM,

Q[CMI? = DaVACMI™E + kOl Mt — koM,
alcsyy = kFICk ST - Ky (oSl
[S]?H = [Bs}tot - [CS]?-H
with the initial conditions
[C)} = [Ca®*]o(z:), [M]] = [Bn]o(z:), (6)
[CM)} = [CaBnlo(2:), [CS) = [CaBslo(z:)
and the Neumann boundary conditions

VerVoyr =0, Ue{lc]MOML[OS]), i€ (0.M), 1<n<N (7)

Here D1 = Dc,_,, Dz = DB.,., and D3 = DCaBm-
Note that the discretized Neumann boundary conditions (7) are equal to
Uy =Up and Uy, =Ux;.
In order to consider the error estimates, we now introduce the discrete L2-
inner product and the corresponding discrete L2-norm on Q4
M1
(V, W) = hZ ViWi = h{(oWo+ VmWa)/2+ Y Viwi}, Vs = (V, V)2
i=0 i=1
for functions V and W satisfying the boundary condition (7). For the maximum

norm, we define

1Viloo = ;s IVi

Hereafter, whenever there is no confusion, (+,+) and || - || will denote (-,), and
Il - Iln, respectively.

It follows from summation by parts and the definition of difference operators
that Lemma 1 holds.
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Lemma 1. For functions V and W defined on Qy and satisfying the boundary
condition (7), the following identity and inequality hold.

M
(1) (V2V,W) = ~h ) (V-Vi)(V-W;).
i=1
(2) max{|V4 VI, |V-VI?} < -2(V2V, V).

Using Lemma 2.5 in [4] and Lemma 1, we obtain the following lemma.
Lemma 2. For V defined on Qp, the following inequalities hold.
IVIZ <3IVI2+8v]IvV|

where V = (V_ + V4)/2.

Remark 1. The concentration of the total mobile buffer is conserved like the
stationary buffer: for 0 <t £ T,

£
& [ {iBnte) + (CaB (et b =0

It follows from (5) and (7) that the corresponding numerical solutions also satisfy
the conservation: for 0 <n <N -1

MII
&y (IMIF+[CM]p) =o0.

=0

3. Convergence of approximate solution

We recall the extension of Lax-Richtmyer equivalence theorem in Lopez-
Marcos and Sanz-Sernal9] which makes us avoid the difficulty of direct proof
for convergence arising specially in nonlinear problems. Let u be a solution of
a problem ®(u) = 0 and u;, be a discrete evaluation of u on Q4. Let Uy be an
approximate solution of «, which is obtained by solving the discrete equation

Qh(Uh,) = 0) (8)

where @), : X, — Y}, is a continuous mapping and X, Y, are normed spaces
having the same dimension. The scheme (8) is said to be convergent if (8) has
a solution Uj, such that ’l‘in%) lUr — unl|lx, = 0. The discretization (8) is said



Ca?t Diffusion Equations 303

to be consistent if il;in}) |®r(un)|ly, = 0. The scheme (8) is said to be stable in

the threshold Ry, if there exists a positive constant © such that for an open ball
B(un, Rp) C X,

Ve — Whllx, < O®n(Vi) — ®a(Whllv,, Y ViyWh € B(un, Ra).

The following theorem is the extended Lax-Richtmyer equivalence theorem
which gives existence and convergence of approximate solutions. For the proof,
see [9].

Theorem 1. Assume that the discrete equation (8) is consistent and stable in
the threshold Ry. If ® is continuous in B(uy, Ry) and ||®n(un)lly, = o(Rh)
as h — 0, then (8) has a unique solution Uy in B(us, Rn) and there exists a
constant © such that

|Un — unllx, < OI®n(un)lly,-

According to Theorem 1, we have only to show that (8) is consistent and
stable in the threshold in order to show the unique existence and convergence of
approximate solutions.

Let Z}} be the set of all functions defined on Q satisfying the discretized
Neumann boundary condition (7) at time level n (0 < n < N). We take X, =

N 4 N
Y, = (H Z,’:) and define a mapping & : X, — Y, by ®,(U) = U, where
n=0
forn=0,---,N-1

i n+i n+i n+l

[t = 8] — DIV 2 + kHULL 2 ([Bsltot — [Ua); +2) 9)
~ kU RO T - ko,

Tolr*t = BUa)? — DVl 4 et U ot — kol

Us|n ! = n_ 2. _ T 4 ks (T

[Us]i™" = &[Us]; — DsV*[Us]; kLT R + K (U E,

Ty n4d n+l - n+l
[Ua)?t = 8 [Ua)7 — kUL T2 ({Boleor — (Ul 2) + k3 [Vl 2
and

[ = [01]? - [Ca®*No(z:),  [Ta)f = [Ual? ~ [Bumlo(z:), (10)
[Ua)? = (Us)° — [CaBumlo(z:), [Ua)} = [Ua]} — [CaBilo(zs).

We take norms || - f|x, and || - ||y, on X, and Y, respectively, such that
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N-1 3
101, = m Z||U"||2+kz{—Z(uv?v;‘*f,v;‘”ﬁ > vt
n=0 Jj=1 j€{1,3,4}
and
101, = ZIIU°I12+kZZHU"II2
n=1 j=1

The consistency of the scheme (5)—(7) is obtained using Taylor’s Theorem
and the Mean Value Theorem.

Theorem 2. Let u = ([Ca2+] [Bm),[CaBpm], [CaBs)) be the solution of (1)-

(4) with bounded derivatives —== &y, and -84—-(1 < j < 4). Then there exists a

('9t3 Ozt
constant © such that
@ (un)lly, < OK® + h3).

We now consider the stability of the approximate solution in the threshold
Ry.

Theorem 3. Let ®,(U) = U, ®,(V) = V and B(un, Rn) be the ball with center
up and radius Ry = O(1). Assume that the conditions in Theorem 2 hold. Then
there exists a constant © such that for any U and V in B(us, Rp),

U = Vix, < ©[2(U) - n(V)liv.

Proof. Let EZ = [U;]* - [V;]™ and I?]" i[’(\]’,]” - [’f/;]" with 1 < j < 4. Replacing
{U;]" and [U;]™ in (9) by [V;]™ and [V;]", respectively, and subtracting these
results from (9), we obtain

del — D1V2e?+% +k} [Bs]tote;H-% (11)
o (e'“f%[U RN A D B
— K (PTG )+ kneg T+ RV,
Bie} — Dyv2elnt
= -k} (e %[U |te 4 [Ul]"+%e;+%) + k;e?% + K3+,
Ouel — DsV2elt? 4 kel th
=k (TP H Wl + Ui ) + Ry,

ol + ky en+2 =k} [Bs ]men+2 - kj(e?+7[U4]"+% + [Ul]"+%62+%) + K3
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1
Taking inner products between (11) and e?+7 and summing these results, we
obtain for some constant ©

Zatnenw ZD (vt + 3 m et (12)
j=1 =1 je{1,3,4}
LT 2 1 1 4 i
gZ‘K;‘““ +0 ”eg‘” + 3 e )3t
j=1 je{1,2,4) *f =1

where 11 = k}[Bsltot,7s = ki, and 74 = k.
Applying Lemma 1-2 and the discrete Gronwall’s inequality to (12), we obtain
for m > 0,

m nt+y ntd +1 |2
ZHe +1||2+kz: Z(V2e]. '€5 2)+ Z e; 2‘
j=1 j€{1,3,4}
4 m+1
<0}, (||e°||2 +k) ||K"|12)
j=1 n=1
Since
eg’ = VO Uo VO K°
the desired result is obtained. 0
It follows from Theorem 1 that for £ = O(h*) and a > 0,
o
[12n(un)liv, "(;‘2:)”“ =O(K* +h?) -0 as h—0. (13)

Hence, applying Theorems 2-3 and (13) to Theorem 1, we obtain the following
error estimate for (5)-(7).

Theorem 4. Suppose that hypotheses of Theorem 3 hold. Let U= ([C],{M],[CM],
[CS]) be a solution of (5)-(7). Then for k = O(h*) and o > 0, there ezists a
constant © such that

U — un|lx, <O+ h?).

Remark 2. If we restrict the Ca?* buffering model (1)-(4) to the cytoplasm
of a cell, we need to modify the boundary condition of Ca?t. But in the case of
sarcoplasmic reticulum, we think the partial differential equations as well as the
boundary conditions must be changed. These modifications are future studies.
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