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ABSTRACT. In this paper second order cone convex, second order cone
pseudoconvex, second order strongly cone pseudoconvex and second order
cone quasiconvex functions are introduced and their interrelations are dis-
cussed. Further a Mond Weir Type second order dual is associated with the
Vector Minimization Problem and the weak and strong duality theorems
are established under these new generalized convexity assumptions.
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1. Introduction

Convex functions are extremely important in Mathematical Programming
because they are among the few functions for which optimality conditions and
duality can be given. Various generalizations of convexity have been considered
in literature. In 1987, Weir, Mond and Craven [12] introduced the class of
cone convex functions. Cambini [2] introduced several classes of vector valued
functions which are possible extensions of scalar generalized concavity. These
classes are defined by using three order relations generated by a cone or the
interior of a cone or the cone without the origin. The aim of this paper is to
define second order cone convexity and its generalizations, where all the functions
involved are twice differentiable.

Second order dual of the primal nonlinear programming problem was first
formulated by Mangasarian [6] that involves second derivatives of the functions
constituting the primal problem. He also derived the duality results for this
pair of problems by using the inclusion condition. One advantage of second
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order duality is that if a feasible point in the primal is given and first order
duality conditions do not apply, then we can use second order duality to
provide a lower bound of the value of the primal programming problem. Mond
(8] proved the second order duality theorems by making use of second order
type convexity. Mahajan and Varatak [5] used the second order convexity
of the Lagrangian to establish the second order duality results. Till now
many authors have given second order duality results. Hanson [4] introduced
second order type-1 functions and applied to second order duality theorems
in Mathematical Programming. Bector, Chandra and Husain [1] extended the
concept of an invex function to a second order invex function called binvex
function. They introduced four models of second order duality for the minimax
problem and established duality theorem for each of them under generalized
binvexity assumption on the functions involved. Egudo and Hanson [3] gave
second order duality results for multiobjective programs using proper efficiency
and assuming that the functions satisfy some type of second order invexity.
Mishra (7] defined second order type 1 function, second order quasi type 1
function and their generalizations and applied to second order duality results
for several mathematical programs. Srivastava and Govil [10] formulated second
order Mond-Weir type dual for a multiobjective nonlinear programming problem
by defining second order (F, p,o)-type 1 functions and their generalizations and
established various duality results.

In this paper, we introduce second order cone convex, second order cone
pseudoconvex, second order strongly cone pseudoconvex and second order cone
quasiconvex functions and discuss the relations among these functions. Further
we associate a Mond-Weir type second order dual to a Vector Minimization
Problem over cones and obtain weak and strong duality theorems under these
new concepts of second order cone convexity and its generalizations.

2. Notations and definitions

Let K C R™ be a closed convex pointed cone with nonempty interior and let
int K denote the interior of K. The positive dual cone K+ of K is defined as

Kt ={y* € R™|(y,y*) > 0,forall y € K}.
We now introduce the definitions of second order cone convex functions and
their generalizations. Let f;, 1 =1,2,...,m be twice continuously differentiable
real valued functions defined on a nonempty open subset X of R® and f =

(f1>f21'--afm)'

Definition 1. f is said to be second order K-convez at u € X with respect to
p€ R™ ifforevery z € X,

H(2) = filw) = (z - )T VA - (z - w)TVA(up + -;- Vi fi(wp,...,

() ~ fr(u) ~ (2 - U)vam(u) -(z- U)Tvzfm(u)p‘*' —épTvzfm(u)p] €K.
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Now we give an example of a second order K-convex function.

Example 1. Let K = {z = (z1,22) |21 < 0,22 > 71} be a cone in R?. Define
a function f: R? - R? as f = (f1, f2), where

h@,e) =m -3, filzi,2) = -13

Vh= (—21332) ’ Vh= (—gmg) ’

Vi = (8 _02) ,  Vifa= (g _02> :

Then f is second order K-convex at u = (0,0) for any p = (p1,p2) € R? because
1
[110) = 70~ (& =900 = (o = TVl + 30" T il

(@) = 12(w) ~ (&~ W)V fa(w) - (2 = 0TV Lo (wlp + 357V folulp

= (=(z2—p)?, —(22—p)*) € K.
Definition 2. f is said to be second order K -pseudoconver at u € X with respect
top€e R™ if foreveryz € X

[z = w7 (Vfuw) + P10 ., ~(z = )7 (Vfm(w) + VFrn(u)p)]
¢ int K
~ (@)~ i) + 3BTV Hi D), o, ~ (@)~ im0+ 387V (D)
¢ intK.

Remark 1. Every second order K-convex function at a point is second order
K-pseudoconvex at the same point. But the converse is not true as can be seen
from the following example.

Example 2. Let K = {z = (21,%2) |22 < 0,21 > z2} be a cone in R?. Define
a function f: R? - R? as f = (f1, f»), where

fl(xlyxZ) = "'x:]i,s f2(21112) = '—x:lj’ — I3

Vi= (-%z%) ; Vifa= (_*ET%) ;

2 _ ‘—62'1 0 2 _ ‘—62;'1 0
V fl it ( 0 0 ] V f2 - 0 O .

Then f is second order K-pseudoconvex at u = (0,0) for any p = (p1,p2) € R%
But f is not second order K-convex at u = (0,0), because for z = (-1,1)

[fl(iv) - filw) - (= —w)TVfi(u) — (z - uw) TV fi(u)p+ %PTszl (w)p,

£@) = o) = (@~ W)V 12() = (& = )TV olalp+ 587V falwp
= (-ah-s) =L ¢ K.
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Definition 3. f is said to be second order strongly K -pseudoconvez at u € X
with respect to p € R™ if for every x € X

[—(& = )T (Vi(u) + V2 A(u)p),..., —(& — w)T(Vfm () + V? fru (v)p)]
¢ intK
1 1
= fl (:L‘) - fl(u) + EPTV2f1(’U)P, see yfm(m) - fm(u) + '2' Tvzfm(u)p] €EK.
Remark 2. Every second order strongly K-pseudoconvex function at a point
is second order K-pseudoconvex at the same point. But the converse is not true
as can be seen from Example 2, where f is second order K-pseudoconvex at

u = (0,0), but not second order strongly K-pseudoconvex at u = (0,0), because
for z = (-2,1)
[~ (@ = w)T(Vfi(w) + V2 fi(w)p), — (= — v)T (Vfa(u) + V* f2(u)p)]
= (0,1‘2) = (0’ 1) ¢ intK’
and

[1166) = £(6) + 39" V. fale) = () + 307 ]
= (-a},-2}-:) =87 ¢ K.
Definition 4. f is said to be second order K -quasiconvez at u € X with respect
tope R* if foreveryz € X
110~ 500) + 37T, £) i) + 557 ]
¢ int K
= [~(@-u)"(VA@)+Vfi(w)p),...,~(@-u)T(Vin(u) + Vfm(u)p)] € K.

Remark 3. If K = R, or R_, then every second order K-convex function at a
point is second order K-quasiconvex at the same point. Otherwise every second
order K-convex function at a point may not be second order K-quasiconvex at
the same point, as can be seen from the following example.

Example 3. Let K = {z = (2,,22) |21 £ 0,22 > 21} be a cone in R%. Define
a function f: R? = R? as f = (fi, fo), where

f1($1,$2) = —IE%, f2(.’1,'1,1;2) = Tq, Vfl = (_%)(L'l) , sz - (2) ,
whe (3 ) e 0).

Then
[f 1(2) = fi(w) = (z - w)TVAE) - (@ - )TV fi(u)p + % TV fi(u)p,

(@) = o) ~ (& = TV o) = (& =)V ol + 57V alwle]

= (~(z1-p1)%,0)€ K forany p=(p1,p:) € R%.
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Therefore f is second order K-convex at v = (0,0) but f is not second order
K-quasiconvex at u = (0,0), because for z = (1,~3) and p = (1,2)

fi@) ~ i) + 38V 1 (0, folo) — o) + 357V fa(w)p

= (—(z? +1),z2) = (-2,-3) ¢ int K,
and
[—(z — w)T(VAi(w) + V2 fi(w)p), —(z — w)T(Vf2(u) + V2 f2(u)p)]
= (2z1,-23)=(2,3)¢ K.

Next example shows that there exist functions which are second order K-
quasiconvex at a point but not second order K-convex at the same point.

Example 4. Let K = {z = (z1,22) |21 < 0,21 > 72} be a cone in R?. Define
a function f: R? - R? as f = (fi, f2), where

fi(z1,22) = 2{(23 + 1), fa(m1, %) = 31 + 3
473(z3 + 1) 1+ 3z?
Vi = , Vi, = ,
h ( 204, f2 0
12z2(z3 +1) 8zizs 6z; 0
Ve = ) V= .
8ziz, 2z} 0 0

Then f is second order K-quasiconvex at u = (0,0) for any p = (p1,p2) € R2.
But f is not second order K-convex at u = (0, 0), because for ¢ = (1/2,0)

1) - 710) = (6 = 0T (0) = (o = TV alwlp + 35TV,
(@) = Flw) = (o = WV 1a0) (2 = 0P ol + 307V ()]

= @@+ = (55) £K.

Remark 4. Note that there exist functions which are second order K-
pseudoconvex at a point but not second order K-quasiconvex at the same
point. For example, the function f considered in Example 2, is second order K-
pseudoconvex at u = (0,0) but f is not second order K-quasiconvex at u = (0,0),
because for z = (-3,1)

Fi@) ~ Fiw) + 557V 0)p, Fa@) ~ Fow) + 50TV o(ulp

= (~z3,-z3 —15) = (27,26) ¢ int K,
and

[ (z - w)T(VAi(w) + V2 A)D), —( - u)T (Vfa(u) + V2 fa(u)p))
= (0,z2)=(0,1) ¢ K.
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Next example shows that there exist functions which are second order K-
quasiconvex at a point but not second order K-pseudoconvex at the same point.

Example 5. Let K = R, x R,.. Define a function f : R? = R? as f = (f1, f2),
where
fl(xl,zz) = (.’El + .’132)3, fz(iL‘l,IL‘z) =z +z9+1

3(z1 + T2)? 1
Vfl"‘ (3(21-’_3:2)2)’ VfZ— <1>7

V2f1 _ 6(1?1 +.’II2) 6(.’1)1 +122) ’ V2f2 _ 0 0 ,
6(z1 + ) 6(z) + z2) 0 0
Then f is second order K-quasiconvex at u = (0,0) for any p = (p1,p2) € R%.
But f is not second order K-pseudoconvex at u = (0, 0), because for z = (1, -2)

[~z - T (VA®) + V2 A@P), - (@~ 0)T (Vi2(u) + V2 fa(u)p)]
= (0,~(z1+z2))=(0,1) ¢ int K
and

[— (1100 = ) + 3" 1twlp) = (o)~ Fatw) + 3579w |

= —((m+22)’ 5 +3)=(L,1) € intK.
Interrelations between second order K-convex functions and its generalizations:

Second order K-Convex

7

Second order K-Pseudoconvex Second order K-Quasiconvex

—f—
Second order strongly K-Pseudoconvex

Remark 5. If p = 0, then a second order K-convex function at u is said to
be K-convex at u. Similarly we have the notions of K-pseudoconvex, strongly
K-pseudoconvex and K-quasiconvex functions at « if p = 0, in the definitions
of second order K-pseudoconvex, second order strongly K-pseudoconvex and
second order K-quasiconvex respectively.

Consider the following vector minimization problem

(VP)  K-Minimize f(z)
subject to — g(z) € Q
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where f;, g;, 1 = 1,2,...,m; j = 1,2,...,{ are real valued twice differentiable
functions defined on a nonempty open subset X of R™ and f = (f1, fa,..., fm)
and g = (g1, 9,...,9¢). Let Xo = {z € X| — g(z) € Q} denote the feasible set
of (VP).

Definition 5. A point T € X is called a weak minimum of(VP) ifforallz € X,
f(Z) - f(z) ¢ int K.

3. Duality

Mond and Weir [9] associated the following first order dual with problem (VP)
(D1)  K-Maximize (f(u),. .., fm(u))
subject to (z — uw) TV (7T f(u) + ATg(u)) > 0 forall z € X
ATg(u) > 0,
where 7 € K+, A e QT,ue X.
We associate the following second order dual problem with (VP).
02 KMaximize (fi(w) = 35V 0p,- .o, ) = 507 fm{ulp)

subject to (z — u)T V(7T f(u) + ATg(u))
+(z —w) V(T f(u) + AT g(u)p >0, forall z€ X,. (3.1)
Ng(u) - 3p" V(T g)(w)p 20, (32)

where 0 £#7€ KT, AeQt,pe R* ue X.
Now we will establish the weak duality relation between feasible points of the
primal (VP) and the second order dual (D2).

Theorem 1 (Weak Duality). If z is feasible for (VP) and (u, T, A, p) is feasible
for (D2), f is second order K-convez at u € X and g is second order Q-convez
atu € X, then

5(6) = 3V 0P~ F(0)s-s ) = 357V Smludp = fnlo)| ¢ ine K.

I_’roof. Suppose that
fiu)= %pTvﬂfl @P=F1(@),- fm(8) = 587V fm ) - fm(:c)] € int K.(3.3)

Since f is second order K-convex and g is second order Q-convex at u € X, we
get

[fl(z) — filw) = (= - w)TVAE) - (& -uw) TV fi(u)p+ %PTszl(U)P, ey

)= F(0)= (2 = U7V (1) & = TV fw)p + 57V Fm(u)p] € 3
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and

512) - 910) - (5~ Vs (0) - o Vsl + 3" Paralp -

9e(z) = ge(u) = (z — u) " Vge(w)— (¢ — )"V ge(u)p + %pTVzge(u)p €Q, (35)
Adding (3) and (4), we obtain
[— ((E - u)TVfl (u) - ((E - u)Tvzfl (u)p9 ey
—(& = u) TV fm(u) = (& = w)TV2fm(u)p] € int K
Since 0 # 7 € KT, we get
(@ - w)TVET ) + (3 - )"V (77 f)(u)p < 0.
Now feasibility of (u,7, A, p) for (D2) gives
(z = u)TV(\Tg)(u) + (2 — u)TV2(ATg)(u)p > 0. (3.6)
From (5), since A € @, we obtain
Mg(z) - Mg(u) - (2 - w)T V(N g)(u) - (z — w) V(AT g)(u)p
+5p" VT g)(wp 2 0. (37
Adding (6) and (7), we get
M g(a) = N gu) + 25" V2N Tg) wlp > O,
which is equivalent to
ATg(u) - %pTVz(/\Tg)(u)p < NTg(z) <0.
This contradicts (2). Hence
[fl(u) - %pTszl (wp - fi(),..., fm(u) - %pTszm(u)p - fm(w)] ¢ intK.
]

Theorem 2 (Weak Duality). If z is feasible for (VP) and (u,T, A, p) is feasible
for (D2) and f is second order K -pseudoconvezr and g is second order Q-
quasiconver at u € X, then

110 = 357V 0~ F(o) o nls) = 357 )~ @) ¢ it K.

Proof. Since z is feasible for (VP) and (u, 7, A, p) is feasible for (D2), we get

Ng(z) - Xg(u) + 25" V(N g)(wp < 0. (38
Now we claim that
(@~ )T (V\Tg)(w) + V(W g)(wp) < 0. (39)

If A = 0, then (9) trivially holds. If A # 0, then from (8), we get

g1(z) — g1(u) + %pTVzgl(u)p, o ge(x) — gelu) + %pTVzgz(U)p ¢ int Q.
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Now g is second order Q-quasiconvex at u € X, therefore we get

[—(z —w)T(Var () + Vg1 (w)p), ..., —(& = w)T (Vge(u) + Vg (w)p)] € Q,
which implies that (9) holds. On using (1) in (9), we get

(@ =) (VT f)(w) + V(T f)(w)p) 2 0.
Now 0 # 7 € KT gives that
[z =W (VAW + V2 fi(w)p),. o, — (& = )T (V fm(u) + VP fm(u)p)] ¢ int K.
Since f is second order K-pseudoconvex at u € X, therefore it follows that

fi(w) = fi(=z) - %p""vgfl (Wp, -, fm(w) = fm(z) - -;—pTvzfm(u)p] ¢ int K. O

We shall be using the following constraint qualifications for proving the Strong
Duality Theorems for (D2).

Definition 6. The function g is said to satisfy Slater’s type constraint

qualification at T

(CQ1) if g is Q-convex at Z and there exists z* € X such that —g(z*) € intQ,

(CQ2) if g is strongly @-pseudoconvex at Z and there exists * € X such that
—g(z*) € int Q.

In order to prove the strong duality theorem, we will make use of the following
lemma which gives generalized form of Fritz John optimality conditions for a
point to be a weak minimum of (VP), established by Suneja, Aggarwal and
Davar [11].

Lemma 1. If % is a weak minimum of (VP), then there exist 7 € K+, A € Q*
not both zero such that (z — )T (FTVf(z) + A\TVg(z)) >0, for all z € X and
Mg(z)=0.

Theorem 3 (Strong Duality). Let £ be ¢ wesk minimum for (VP) at which
the Slater’s type constraint qualification (CQ1) is satisfied. Then there exist
0#7¢€ K* and X € Q* such that (Z,p = 0,7,)) is feasible for the second
order dual problem (D2) and both the objective functions are equal. Moreover
if f is second order K-convezx and g is second order Q-convez at T € X, then
(2,p = 0,7, ) is weak mazimum for (D2).

Proof. Since Z is a weak minimum of (VP), by Lemma 1, there exist 7 € K+,
A € Q% not both zero such that

(z - 2)T(FTVS(E) + MTVg(2) >0, forallzeX, (3.10)
and

Mg(z)=0. (3.11)
We assert that 7 # 0. On the contrary suppose that 7 = 0, then A # 0 and from
(10), we get

(z - 2)T(A\TVg(z)) >0, forallzeX. (3.12)
Since the Slater’s type constraint qualification (CQ1) is satisfied, it follows that
there exists z* € X such that —g(z*) € int Q.
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Now 0 # X € Q7 gives that
Mg(z*) <0. (3.13)
Also since g is Q-convex at Z, we get

[91(2) = 91() = (z = 2)T Vg1 (2),. .., 9e(2) — 92(8) = (x — 2)T Vge(2)] € Q,
for all z € X.

Since X € QF , we get AT g(z) — ATg(Z) — (z —£)TATVg(z) > Oforall z € X.
Using (11) and (12), we obtain ATg(z) > 0 for all z € X . In particular for
z = z*, ATg(z*) > 0, which contradicts (13). Hence 7 # 0.

Thus (10) and (11) give that (z,p = 0,7, ) is a feasible solution for (D2).
Both the objective functions coincide as p = 0. Suppose that (Z,5 = 0,7, \) is

not a weak maximum for (D2), then there exists a feasible solution (u,p, 7, A) of
(D2) such that

f1(0) = STV Fu(Wp — Fi(8) + BTV @) fa() — P72 fm(u)p
2 2 2

—fm(Z) + %ﬁTVQfm(i')f) € intK.
Since p = 0, we get
[fl (u) - %pTVZfl (wp ~ f1(2),- .-, fm(u) = %p’-’v2 Fr(W)p = fm(Z)] € int K

which contradicts Weak Duality Theorem 1. Hence (Z,p = 0,7, ) is a weak
maximum for (D2). O

Theorem 4 (Strong Duality). Let & be ¢ weak minimum for (VP) at which
the Slater’s type constraint qualification (CQ2) is satisfied. Then there exist
0#7¢€ Kt and X € QF such that (Z,5 = 0,7, ) is feasible for the second order
dual problem (D2) and both the objective functions are equal. Moreover if f is
second order K -pseudoconver and g is second order QQ-quasiconver at T € X,
then (z,p = 0,7,)) is weak mazimum for (D2).

Proof. Proceeding on the same lines as in the proof of Theorem 3, we get that
(10) and (11) hold. We assert that 7 # 0. On the contrary suppose that ¥ = 0,
then X # 0 and from (10), we get (z — 2)T (AT Vg(z)) > 0 for all z € X.

Since 0 # A € @, we get [-(2-2)TVg1(3),...,~(z~%)TVg(%)] ¢ int Q for
all z € X. Now since Slater’s type constraint qualification (CQ2) holds, therefore
g is strongly @-pseudoconvex at Z, so we get g(z) — g(Z) € Q for all z € X,
which gives that

X (g(z) — 9(2)) > 0, for all z € X. (3.14)
Since the Slater’s type constraint qualification (CQ2) is satisfied at Z, it follows
that there exists z* € X such that —g(z*) € int @, which gives that A7 g(z*) < 0.
Using (11), we get AT (g(z*) — g(&)) < 0, which contradicts (14). Hence 7 # 0.
Rest of the proof follows on the lines of Theorem 3. 0O
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