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GOODNESS OF FIT TESTS BASED ON DIVERGENCE
MEASURES
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ABSTRACT. In this paper, we have considered an investigation on goodness
of fit tests based on divergence measures. In the case of categorical data,
under certain regularity conditions, we obtained asymptotic distribution of
these tests. Also, we have proposed a modified test that improves the rate of
convergence. In continuous case, we used our modified entropy estimator
[10], for Kullback-Leibler information estimation. A comparative study
based on simulation results is discussed also.
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1. Introduction

Suppose Y is a random variable with a density or probability mass function
f(y, 6), that support of which is partitioned in ”k” paired disjoint sets Ay, -+, Ax
in which 8 = (6y,---,0)" is a vector of unknown parameters that § € ® C R™
and m < k — 1. We define m; = P(Y € A4;|0) for j = 1,2, .- ,k.

In n independent observations of random variable Y, suppose X; is the num-

ber of observations belonging to the set Aj, in this case (X1,---,Xx) have
multinomial distribution with parameters (my,--- ,mg). The goal is to testing:
Hy: mj = mjo for j = 1,2, -,k against any alternative H, where 7;os are some
k
preassigned probability with Zﬂ’jo =1.
j=1
If p; is the proportion of observations in A;, then a natural criteria for the
test, is comparison of two vectors p = (p1,---,px) and 7 = (10, ,Fk0)’

based on a divergence measure in which #jo = Po(Y € A;|6) and § is a suitable
estimator based on X;s. From {1] and (3], for any continuous and convex function
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h : [0,00) — (—00,400) that is zero only at point 1, a general class of divergence

measures, under discrimination function "h” for two probability vectors p and ¢
has been defined as follows:

ipg) =)t (f}) e =2 ph (Z‘)

in which h*(z) = xh(%) It is well known that In(p,q) > 0 and In(p,q) = 0 if
and only if p = g. Thus, the class of tests based on divergence measures I can
be considered as:

k
In(p,mo) = Zﬁjoh(.p—_])-
=

Also, the Jensen difference is given in [13] as:

Tute) = H (*5¥) - 3() - 3H0)

k
in which H is an entropy function, H(p1, " ,px) = Z@(pi), such that @ :
i=1
(0,00) — (—00,+00) is a concave and continuous function where ®(1) = 0.
Therefore, the other class of tests are as follows:

k .
. : + T 1 1.,
Jo(p, o) =Y _ (‘1’ (&—2——@) - 5®(p) - §q>(7no)> :
=1

In the case of uncategorical data, suppose random variables Y;,:+:,Y, are
iid with a continuous distribution F(y,8). For testing Hy : Y ~ Fy(y, @), let
{by < -++ < bk41} be a partition of the sample space, so that Fy(bg41,6%) =1
and Fy(bo,6*) = 0 in which 6* is an estimator of §. Thus, with setting X;

as the number of observations belonging to the category [b;,bi+1) and #ip =
Fy(biy1,0*) — Fo(bi, 0*), we define:

R =1 (Bt - Fu-3),

= 1/ - t - 1A
== F 2= Fofy — 2
o) = 1 (Foty+ )~ Foy = 3))
in which
) 13 ) i
Foly) = — ZXJ" Foly) = Zﬁjo
nia j=1
for every y € [bi,bip1) and 0 < t < eréligk(b,-ﬂ —b;). Now, we can set

Di = tfn(bi) and T = tfo(bi).
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On the other hand, divergence measure in continues case, is defined as [3]:
Ih‘(fmfo) = /h* {_0_(3_/_2_ dﬁn(y)
faly)

Hence, with replacement of the usual empirical distribution function and a
density estimator such as fp, we have:

In- (s fo) = Z f Z

Therefore, we can use Ip.(fn, fo) as a test statistic with the rejection region
{In+(fn, fo) > 13} in which P(Ip+(fn, fo) > I3) = a.

In this paper the class of goodness of fit tests is considered on the basis of
divergence measures (DM-class), that is a kind of measure between empirical
density function and hypothesized density function. In the sections 2 and 3,
with simulation methods, some selected tests in this class were compared for the
categorical and uncategorical data, respectively.

2. Goodness of fit tests and simulation results for categorical data

From [12, p. 360- 363 and p. 391}, we have the following theorem:

koo a2 \2
Theorem. Under the following conditions, the statistic nzw-z— has

T30
asymptotic distribution X%k-—-m—l)’ in which g = Po(Y € A,—lé) and 6 is a
mazimum likelihood estimator based on X;s. (suppose k is constant).

a) Suppose Oy is the true value of 8, as interior point ©, for given a 6 > 0, it
is possible to find an € such that:

7Tz0(90)
}: 10(60)1 > e
o b5 2 mio(0 °g( 0(9))~5

b) The functions mig admzt continuous first order partial derivatives with re-
spect to 0; fori=1,--- \kandj=1,---,m

c) Matriz (71';(')% %7;—10> is of rank m if @ = 6.
J

d) Information matriz ( 1 dmjo dmjo

; mjo 8, db,

) is non-singular if § = g.

Now, with using this theorem, we prove the following corollary:

Corollary. Under the conditions of above theorem, suppose h(.) is a continuous
function and h® is a derivative of order i, such that:

a) h(Y) and h?) ezists and are continuous in a closed neighborhood of 1 and
R (1) =0

b) h®) ezist and is uniformly bounded in an open neighborhood of 1.
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2n
Then, the statistic PO )Ih(p, ip) has asymptotic distribution x(k —m—1)"

In(p, 7o) — Z Mo_)_ — 0 in distribution
( ) -1 30
as n — oo. With Taylor’s expansion for function "h”, we have:

1 z A1)/ p; N2 O
h(”m)—h(1)+h(1>(1)(%—1)+h7(1)(%-1) 4 e) 6(6’)(;1—0—1)

—1},fori=1,2,-- k. Therefore:

Proof. We show that n , O

in which |¢; — 1| <

10

. x)2 @) @) (.
L) =3 & fr-:m) {h D (C’)(_’i_l)}
i=1 ke

2 6 Ti0

Considering ‘—&— - ll — 0 in probability as n — oo, then the value of ¢; to be
e

0
in the neighborhood of 1, and the corollary is proved. O

2n
Hence, the asymptotic rejection region of this test is { @) ———1Ix(p, 7o) > xa}

in which x? is the 100a% upper point of Chi-square distribution with k —m —1
degrees of freedom. This approximation is suitable provided that in the major-
ity of nirjo are not too small. The sensitivity to this considerably depends on
function “h”. Thus, the best discrimination function should be selected to have
high convergence speed and less sensitivity to small nijo.

When a model under null hypothesis is not dependent on unknown parame-
ters, a modification statistic is presented for speed up convergence rate. Suppose
“h” has continuous derivatives up to fourth order; after a fairly long algebraic
work as mentioned in the appendix, the following modified statistic is proposed:

ey n (P mo) — i

Ok
where
1 2
O'k———1+'2—n—(m(B2—Bl —2(’6—1)31),
e = (k—1)(1-0x)+ B
and

R®)(1) h4)(1)

By, = (2—2k—k2+t)+<§zg——%) (t(k + 8) ~ 6k* — 13k + 10)

1 /R®(1)\°
+ 5(——h(2)(1)) (4 — 6k — 3% + 5¢)
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( h9(1)

m) (t(3+ k) — 5k — 2k* + 3),

in which t = —

Now, the efﬁcxency and the power of some tests related to DM-class have
been studied for categorical data on using simulation with selecting some special
forms for function “h” as follows:

h Divergence measure Test statistic
k k
bi pi
1 i log(— ST1=2 i log(—
zlogla) ) pilos((h) nY 1) pilog(2-)
i= eSS

k
(x 1) Z ._l ST2=n Z ;z:"’)

z(z¥ - 1) ;pi ((%)% - 1) ST3 = —an ((7—7;) - 1)
k

WVE-1? Y (VR -vE)  ST4=4n) (v~ v/w)
i=1

(z - 1)? “ (pi — g1)° _ (pi — #0)?
; : ST5 = 2n§ i
ST1 is likelihood ratio test based on the Kullback-Leibler information mea-
sure. ST2 is famous Pearson’s test {11]. ST3 in [14] and ST4 on the basis of
square of Hellinger’s distance in [7] has been proposed.
The next statistic is the selection of Shannon entropy in the class of Jg(p, 7o)
tests with ®(z) = —zlog(x). Therefore, the test statistic is as follows:

k
. T . . 1 . . l -
ST6 = —-4n2{(p’+27r’°)log(p‘zm°) _ Pilogpi +27r,0 ogmo}.

In the table 1, the amount of asymptotic significant level
B(k) = p(ST > x}_o(k — 1)|Ho)
for homogeneity test of a population with 6 category and different sample sizes,
and in the table 2, for a sample size 30 and different categories “k”, has been
simulated on the basis of 10,000 samples and at the significant level of 5%.

According to this tables the asymptotic significant level of tests ST1, ST4 and
ST6 are increasing function of “k”, that is, these tests are sensitive to small
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expected values in the categories, so that, the status for ST4 is much critical.
When “k” is small, the proposed modification is effective and the asymptotic
significant level will tend to the true value as n increases. Moreover, the best
test according to these tables are ST2 and ST3 which preserve the significant
level when “k” increases.

In the table 3, for k = 6 and n = 30, the true and asymptotic powers of these
tests have been simulated on the basis of modified and non-modified statistics
based on 10,000 samples and at the significant level 5%. As one can see, the pro-
posed modification will make the true and asymptotic powers closer; moreover,
those are the same in the test ST2, and in the test ST3 are almost the same.
No specific rule can be proposed whether which test is more powerful.

In the table 4, the amount of asymptotic significant level

Blk) = P(ST > xi_(k — 3)|Ho)

for normality test of data has been simulated based on 5000 samples and at the
significant level 5%. Here, we have categorized our data to have 1 = - -+ = fig
asymptotically, under normal hypothesis. In this case, the categories should be
selected as follows:

(—00,Z +218),[E+ 218, T +228), -+, [T+ Zx-1,00),

in which  and s are mean and standard deviation of sample, respectively, and
Z4 is 100a% upper point of standard normal distribution. This selection of the
categories will make the power function to approach to 1. As one can see in the
table 4, the asymptotic significant level of ST1, ST4 and ST6 tests are increasing
function of “k” and in the other tests are decreasing function of “k” so that for
middle “k” the best tests from the view of significant level are ST2 and ST3.

3. Goodness of fit tests and simulation results for uncategorical data

In this section on using simulation, we have compared the power of some tests
in DM-class with two tests based on the empirical distribution function (EDF-
class), such as Cramer-von Mises and Anderson-Darling, for normality test of
data. The values of simulations have presented in the table 5, that are based on
5000 samples and at the significant level 5%. Here, with selecting some special
forms for function ”h”, we obtain the following tests:

h* Divergence measure Test statistic

@-12  [(3-1) aF ST1=150, (S —1)°

Wa-v J(ff- e s gy (VAR )
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h* Divergence measure Test statistic
o-1  [|$-1]aF ST3 =1y, | £ -1

@-Ubyrf(—dﬁ%()ﬂ?sm—lz (ﬁﬁ%dw%(%%)
~ log(z) [ log (‘gﬁ) dF STs5= 137" log (70-&—”

ST1 is the continuous version of Neyman statistic [6] and the statistics ST2,
ST3, ST4 and ST? are based on divergence measures: square of Hellinger, Total
variations, Jeffreys and Kullback-Leibler, respectively.

It should be noted that Kullback-Leibler information measure can also be
written as follows:

KL(f,g) = ~H(f) - / log(g)dF

in which H(f) = — [log(f)dF is called entropy of f. In this case, we can use
the following test statistic:

~H(f) ~ = > log foai, )
i=1

in which H(f,) is an estimator of entropy and § is a maximum likelihood esti-
mator of 6.

Many papers such as [2], [4], [5], [9], [15] have been written on goodness of fit
tests for various distributions through the above-mentioned statistic with using
Vasicek entropy estimator [16]. In [10], a modification of entropy estimator has
been introduced which has an smaller bias and MSE, also the best selection of
window parameter in various distributions and different sample sizes have been
obtained. Here, we will use this entropy estimator as follows:

TS S e

where
Z,--m-a+' (X(l)—a) 1<i<m,
Zi X(,) m+1$i$n—m,
Zi+m=b—n7(b X(n)) n—-—m+1<i<n
and

d; = m+1<i<n—m,

1+ 2=l p_m41<i<n

n—i+m

{1+;ﬁ3 1<i<m,
2

where b = X(n) + 20=XW 514 o = X, - Xm=X@),

n—1
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Moreover, X1y < ... < X(n) are ordered statistics and m < 7 is window
parameter. Here, the entropy estimation method has been used for estimation
of Kullback-Leibler information measure (ST6). Considering that in practice,
Kullback-Leibler information estimation may not be positive, so window pa-
rameter used to have positive estimation. Based on our simulation results in
Normal distribution, suitable window parameter is closest integer value of ¥/n.

The density estimator of data has been calculated with Kernel method with
Gaussian Kernel. With regard to our simulation results, to have positive Kullback-
Leibler information estimation, the smoothing amount in calculation of the den-
Xm) = Xq)
2(1+ logy)
posed. Also, forms of Cramer-von Mises and Anderson-Darling statistics related
to EDF-class is as follows, respectively:

n 2%-1\> 1
CM—iZ:;(yi————Zn ) + 5o

AD=-—n-— % ; {(2z' ~ 1)(log(1 — yn—i+1) + 108(.%‘))}

sity estimator should be low. Therefore, the band width of is pro-

in which y; = Fo(z(;),0) and 23y < -+ < 2() are ordered observations. Taking
into account that we intend to perform the hypothesis test Ho : X; ~ N(u,0?)
with unknown parameters p and g2, to omit unknown parameters, we consider
the test problem Hy : X"STX ~ N(0,1) fori =1,---,n and n > 20, in which
X and S are mean and standard deviation of sample respectively, therefore, fo
and Fy are density and standard normal distribution functions. Here, the family
of distributions namely t-student (t), Chi-square (x2), Weibull (W), Beta (),
Skew Normal (SN), Laplace, Logistic and Lognormal (LN) are considered as
alternative hypothesis Hj.

On noting to the table 5, when the distribution under H; is fairly similar
to Normal, the power of the DM-class in compared with EDF-class is lower,
and amid tests of DM-class, ST4 is better than others. The important point is
that alternative hypothesis is the symmetric Beta distribution, then the power
of tests of DM-class is considerably higher.

4. Conclusions

In this paper, an investigation has been performed on some selected good-
ness of fit tests from the class of divergence measures. Under some regularity
conditions, asymptotic distribution of the tests is obtained and a modification
is proposed. According to our simulation studies, for normal testing, when the
distribution under H; is fairly similar to Normal, the power of the DM-class in
compared with EDF-class is lower, and when the alternative hypothesis is sym-
metric Beta distribution, the power of DM-class is considerably higher. Also in
the case in which the data are categorized, the best test is still Pearson [11] so
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that its convergence rate to Chi-square distribution is high and has less sensi-
tivity to small expected values in the categories. In any case, this class of tests
can also be studied for Log-linear models and dependence in cross tables.
Remark. The values of tables 1 to 5 are multiply by 1000.

Appendix:

Suppose function "h” has continuous derivatives to fourth order, and A() be
a derivative of order i; we have the following equations via Taylor’s expansion :

k
P a E(W,?) h3(1 E(W3
E(h(z)(l")f(p,WO)> = ; Tio 3h(2)(1)2
(4)(1
7
+ T2R®) (1) < Z +o(n )
2
n _ E(W‘*) E(Wfo)
E(h(z)(l)l(p’m))> = ; Trw +§; P

BO(1) \* [ EOV) | - BVEWS)
<3h(2)(1))> {Z Tgn-go)*; i,

20 (1) [ E(Wf) E(W2W})

+ <3h(2)(1)> {z:: nrd, +Z Vnmions, }

ROW \ [ EWE) EWIW) -
6h(2)(1)> {; nrd +Z N, +oln %)

0 i

where W; = v/n(p; — mio), and with respect to results in {14, p. 177-178] ,we
have:

2n 1, A1)
g (h@)(l)l(p’ ﬂ°)> - kh;)l(i O
1 32
+ m(?—?k-{-t)}"}’O(n 2)
n 2 1
E<h(2)(1)I(p m)) - kZ(—a)1+;{(2—2k-k2+t>
+ %@)E—g(t(k+8)w6k2—13k+10)

r®(1)\?
+ —(h@)gl;) (4 — 6k — 3k2 + 5¢)

h®(1) rp oL2
( G )>(t(3+k) 5k — 2k% + 3)}
+ o(n77)

|
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TABLE 1. Monte Carlo Estimations of the asymptotic signifi-
cant level for homogeneity test for k = 6 and a = 0.05.

n ST1| ST2| ST3| ST4| ST5| ST6
10(a| 26 40 40 74 26 12
b| 77 40 40 | 254 51 185
15(a| 35 53 44 80 48 33
b| 74 39 44 | 359 56 126
20| a| 50 48 46 148 | 61 45
b| 85 48 46 165 75 144
25| a| 46 47 47 72 57 52
b| 77 47 45 104 64 100
30 |a| 48 47 47 46 61 42
b| 66 47 47 87 65 79
35 1a| 43 48 47 41 55 32
b| 59 48 47 78 61 73
40 1a} 43 50 48 40 55 33
b| 57 45 48 77 61 64
50 |a| 43 44 45 40 81 35
b| 53 44 45 66 55 62

a: modified statistic and b: non-modified statistic

TABLE 2. Monte Carlo Estimations of the asymptotic signifi-
cant level for homogeneity test for n = 30 and a = 0.05.

k ST1| ST2| ST3 | ST4| ST5| ST6
8 [a] 39 45 45 115 55 32
b| 72 45 44 159 66 123
10|a} 35 44 45 76 51 21
b| 8 44 44 297 70 141
12({a| 24 49 41 7 44 10
b| 92 39 39 306 69 176
14(a]| 15 57 42 72 37 4
b | 102 42 41 436 70 203
16(a| 9 45 42 47 29 1
b| 97 45 40 473 62 215
18|a| & 48 44 40 21 0
b | 105 48 45 567 61 249
20|a| 3 60 40 18 15 0
b | 100 45 39 684 53 275
2|a| 9 50 35 9 8 0
b | 108 50 34 732 46 285

a: modified statistic and b: non-modified statistic



Goodness of fit tests based on divergence measures 187

TABLE 3. Monte Carlo Estimations of the power for homogene-
ity test for n = 30, £ = 6 and o = 0.05.

T (71,00, ) ST1 | ST2 [ ST3 | ST4 | ST5 | ST6

1/6,1/6,1/6,1/6,1/6,1/6 50 | 50 | 50 | 50 | 50 | 50
45 | 48 | 47 | 41 | 59 | 37
65 | 48 | 47 | 83 | 64 | 74

1/8,1/8,1/8,1/8,2/8,2/8 239 | 265 | 277 | 244 | 238 | 223
929 | 265 | 259 | 199 | 256 | 184

283 | 265 | 259 | 323 | 275 | 301

1/9,1/9,1/9,1/9,2/9,3/9 468 | 523 | 533 | 431 | 454 | 430
454 | 523 | 509 | 399 | 477 | 387

517 | 523 | 509 | 522 | 503 | 528

1/10,1/10,2/10,2/10,2/10,2/10 190 | 175 | 190 | 187 | 192 | 186
180 | 174 | 176 | 168 | 212 | 156

224 1 174 | 176 | 274 | 222 | 254

1/12,1/12,1/12,3/12,3/12,3/12 542 | 549 | 570 | 532 | 548 | 529
528 | 548 | 547 | 499 | 570 | 473

591 | 548 | 547 | 643 | 590 | 623

107 | 107 | 117 | 103 | 106 | 101
100 } 107 | 105 | 90 { 119 | 83
131 | 107 | 105 | 163 | 128 | 149

2/15,2/15,2/15,3/15,3/15,3/15

QWO EQm>QE>am >

A; true power and B(C): modified (non-modified) asymptotic power

TABLE 4. Monte Carlo Estimations of the asymptotic signifi-
cant level for Normality test for o = 0.05.

n| k| ST1| ST2| ST3| ST4| ST5| ST6
306 | 7 66 68 | 107 | & 99
8| 92 53 60 | 124 | 87 120
10| 90 56 55 | 273 | 81 159
12| 92 54 51 307 | 73 160
14| 109 53 51 | 376 | 84 | 210
16 | 116 50 45 | 485 7T 1 241
18 | 114 48 43 | 577 | T4 | 272
20| 122 54 46 | 626 | T2 | 299
50 6| 72 66 68 85 74 82
10 76 54 54 98 75 92
14| 85 52 52 | 230 | 80 141
18 | 101 53 50 | 326 | 81 202
22| 118 52 50 | 482 | 84 | 244
26 | 130 52 46 | 615 | 83 | 302
301 135 50 40 | 11 76 | 362
34| 147 | 51 37 | 816 | 68 | 413
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TABLE 5. Monte Carlo Estimations of the power for Normality
test for o = 0.05.

j28 n | ST1] ST2 | ST3 | ST4 | ST5 | S16 | CM | AD
t(1) |20 | 648 | 812 | 662 | 821 | 835 | 767 | 872 | 875
50 | 941 | 993 | 918 | 993 | 992 | 990 | 997 | 997

t(3) |20 135 | 254 | 121 | 279 | 284 | 168 | 301 | 330
50 | 248 | 505 | 156 | 583 | 557 | 398 | 579 | 606

t(5) |20 67 | 131 | 54 | 142 | 128 | 83 | 156 | 74
|50 97 | 233 | 70 | 300 | 277 | 141 | 276 | 311
t(10) |20| 48 | 67 | 48 | 71 | 73 | 54 | 84 | 96
50| 55 | 88 | 42 | 120 | 109 | 57 | 89 | 105

x2(1) |20 921 | 976 | 962 | 975 | 967 | 990 | 947 | 968
50 | 999 | 1000 | 999 | 1000 | 1000 | 1000 | 1000 | 1000

X*(3) |20 458 | 610 | 468 | 608 | 567 | 603 | 538 | 596
50 | 911 | 969 | 897 | 973 | 977 | 981 | 920 | 962

x2(5) |20 284 | 396 | 291 | 400 | 346 | 347 | 340 | 380
50 | 703 | 812 | 665 | 837 | 828 | 805 | 732 | 806

W(1,1) |20 | 659 | 799 | 674 | 797 | 769 | 831 | 726 | 777
50 | 987 | 999 | 978 | 999 | 998 | 999 | 987 | 995

W(2,1) |20] 144 | 171 | 149 | 163 | 144 | 130 | 116 | 133
50 | 283 | 319 | 276 | 340 | 335 | 336 | 217 | 256

w@3,1) |20 79 | 73 | 76| 71| 62 | 63 | 50 | 51
50| 89 | 68 [ 88 | 71 | 74 | 75 | 50 | 54

B(1,1) |20 366 | 368 | 385 | 354 | 308 | 410 | 133 | 167
50 | 831 | 832 | 835 | 829 | 851 | 924 | 436 | 566

B(2,2) |20] 134|133 | 146 | 126 | 107 | 132 | 59 | 61
50 | 303 | 268 | 321 | 250 | 253 | 308 | 107 | 130

B(3,3) |20] 8 | 78 | 94 | 72 | 71 | 83 | 44 | 46
50 | 163 | 141 | 186 | 137 | 140 | 156 | 64 | 70

Laplace |20 | 58 | 60 | 55 | 55 | 60 | 42 | 61 | 61
50| 50 | 52 | 53 | 57 | 52 | 50 | 63 | 60

Logistic | 20| 121 | 153 | 112 | 152 [ 131 | 71 | 88 | 95
50 | 269 | 319 | 253 | 341 | 314 | 122 | 153 | 169

SN(1) {20224 | 280 | 220 | 281 | 225 | 218 | 226 | 255
50 | 499 | 582 | 495 | 598 | 577 | 513 | 515 | 573

SN(2) |20| 182 | 276 | 166 | 200 | 301 | 234 | 426 | 438
50 | 460 | 630 | 402 | 669 | 642 | 562 | 749 | 753

SN(@3) |20| 56 | 77 | 55| 8 | 79 | 53 | o7 | 106
50| 65 | 108 | 42 | 143 | 131 | 68 | 139 | 159
LN@©,01)|20| 71 | 77 | 67 | 77 | 66 | 51 | 67 | 70
50| 77 | 82 | 79| 96 | 91 | 73 | 84 | 92
LN(0,02) | 20| 98 | 120 | 100 | 118 | 117 | 86 | 109 | 120
50 | 167 | 222 | 142 | 254 | 235 | 185 | 208 | 236
LN(0,0.5) | 20 | 347 | 487 | 343 | 491 | 451 | 416 | 439 | 458
50 | 738 | 870 | 707 | 886 | 880 | 837 | 821 | 868
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E1
in which ¢t = —_—
=1 "0
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