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MULTIOBJECTIVE FRACTIONAL SYMMETRIC DUALITY
INVOLVING CONES
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ABSTRACT. A pair of multiobjective fractional symmetric dual programs
is formulated over arbitrary cones. Weak, strong and converse duality
theorems are proved under pseudoinvexity assumptions. A self duality
theorem is also discussed.
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1. Introduction

Dantzig et al. [5], Dorn 7], and Bazaara and Goode [1] studied symmetric
duality for convex/concave functions in nonlinear programming. Subsequently,
Mond and Weir [14] presented a distinct pair of symmetric dual programs which
admits the relaxation of convexity / concavity assumptions to pseudoconvex-
ity/pseudoconcavity. The duality results discussed in [14] were generalized by
Chandra and Kumar [4] in the sense of Bazaraa and Goode [1].

Gulati et al. [8] discussed Wolfe and Mond-Weir type multiobjective sym-
metric duality results under invexity and pseudoinvexity, respectively, without
nonnegative constraints. Kim et al. [11] generalized the results in [8] to arbitrary
cones. In [16], Suneja et al. formulated a pair of multiobjective symmetric dual
programs over arbitrary cones and proved various duality results by assuming the
functions involved to be cone-convex. Recently, Khurana [10] presented Mond-
Weir type symmetric duality over arbitrary cones involving cone-pseudoinvex
functions.

Chandra et al. [3] formulated a pair of symmetric dual fractional programs
under suitable convexity assumptions. Nanda and Das [15] derived symmet-
ric duality results for multiobjective fractional programming problem involving
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cones. Gulati et al. [9] established usual duality results for static and contin-
uous symmetric dual fractional programming problems without nonnegativity
constraints using the notion of invexity. In [17], Weir presented a pair of mul-
tiobjective fractional symmetric dual programs and derived symmetric duality
theorems under convexity assumptions. Lalitha et al. [12] generalized the sym-
metric duality results in [17] involving invex functions without nonnegativity
constraints. Recently, Yang et al. {18] presented the nondifferentiable multiob-
jective symmetric fractional programs and proved appropriate duality relations
under invexity assumptions.

In this paper, we formulate a pair of multiobjective fractional symmetric dual
programs over arbitrary cones and establish appropriate duality theorems under
pseudoinvexity assumptions. At the end, a self duality theorem is also discussed.

2. Notations and preliminaries

Let R™ denotes the n-dimensional Euclidean space and R} be its non-negative
orthant. The following conventions for vectors £ and y in R" will be followed
throughout this paper: t <y z; <y;,i=1,2,... , n,e<yez, <y, i=
,2,...,n, z R yez <y it=L12..,n but z # y. The index set
K={1,2,... k}.

Definition 1 [2]. Let z € C C R™. Then C is a cone if and only if Az € C, for
all A > 0. Moreover, C is called a convex cone if it is convex.

Let S; C R™ and S2 C R™ be open and let C;, C3 be closed convex cones
with nonempty interiors in .S and Sz, respectively. Let C C R™ be a cone. Then
C* is said to be a polar of C, if

C*={z€R"| 272 <0, forallzecC}.

Definition 2. A real-valued function ¢ : S; X S; — R is said to be pseudoinvex
in the first variable at u € Sy for fixed v € Sy if there exists a function 7 :
S1 x S1 — R™ such that

n(z, w)T [Vad(u,v)] > 0= ¢(z,v) > ¢(u,v),

and ¢ is said to be pseudoinvez in the second variable ot v € Sy for fized u € Sy
if there exists a function £ : S x S, — R™ such that

£(v, )" [Vyd(u,v)] 2 0= ¢(u,y) > $(u, ).

Definition 3. A real-valued function ¢ : S; x S2 — R is said to be strictly
pseudoinvez in the first variable at u € S for fired v € Sy if there exists a
function 1 : §1 x §; — R™ such that

n(z, w)T (Voo (u,v)] > 0= ¢(z,v) > ¢(u,v),
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and ¢ is said to be strictly pseudoinvex in the second variable at v € S for fixed
u € 8, if there exists a function £ : S x Sy — R™ such that

E(v,9)7 [Vyd(u,v)] > 0= ¢(u,y) > ¢(u,v).

Throughout the paper, V ¢(z,y) and V z¢(z,y) denote the first and sec-
ond order gradient vectors of ¢ with respect to the first variable. Vy¢(z,y),
Vyyd(z,y) and Vo é(z,y) are defined similarly.

Consider the multiobjective programming problem:

(P) Minimize h(z) = (hi(x), ha(x), ... , hp(z))
subject to g{z) <0,
where h: R* — RP and g : R* — R™.

Definition 4. A feasible point Z of (P) is said to be weakly efficient for (P) if
there exists no other feasible point = such that h(z) < h(Z).

3. Symmetric duality

In this section, we formulate the following pair of multiobjective fractional
symmetric dual programs and prove corresponding duality results.

. (filz,y) fe(z,y)
(FP) Minimize (m, e ,m>

subject to
> i[5, 0)Vy fi(z,9) - i@, Vagi(z,y)] € G5,
ieK
yTY N [gi(x, VIVyfi(z,y) — filz, ) Vygi(z, y)] >0,
i€eK

A>0,z€(Cy.

P . fl(uvv) fk(u7v)
(FD) Maximize (g1(u, ) ’gk(u,v))

subject to
= 37 X [9e(w, ) Vafilw,) = fi(,0) Vags(u, )] € G,
i€k
WY Au[gs(u,0) V() = fil,0)Vagi(w,v)] <0,
icK

A>0,veCy,

where f; : C; x C3 — Ry and g; : C1 x C2 — R4\ {0}, i € K are twice
differentiable functions.

Remark 1. If k =1 and g = 1, then (FP) and (FD) reduce to the symmetric
dual programs of Chandra and Kumar [4].
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It is convenient to parameterize the problems (FP) and (FD) in the sense of
Dinkelbach [6] for validating duality theorems by defining
f’l(x y) d 3 fi(u"v), Z e K
 ai(zy) gi(u,v)
and thus express the programs (FP) and (FD) equivalent as :

(FP)’ Minimize r = (r1,72,... ,Tk)
subject to
filz,y) - ngz-(w, y)=0, i€ K, (1)
Y %[Vdi@y) —riVysla )] €G3, (2)
i€EK
TZ Ai [Vyfz(x y) —riVygi(z, y)] 0, (3)
iEK
A>0,z€C. (4)
(FD) Maximize s = (83,82, .. , Sk)
subject to
filu, v)_sigi(u v)=0, 1€ K, (5)
= 3 M| Vafi(w,) - 5Vagi(w,v)] € CF, ©)
ieK
TP [vmf,-(u, v) - 5 V2gi(u, v)] <0, )
ieK
A>0,v€Cs. (8)

We now establish symmetric duality theorems for (FP)' and (FD)' by taking
the following assumptions similar to those taken by Mond and Hanson [13] and
Chandra and Kumar [4]:

n(z,u) +u € C1, forall z,u € Cy, 9)

£(v,y) +y € Ca, for all v,y € Co, (10)
where n: Cy x Cy — Cq, €:Cy x Cy — Ca.

Theorem 1 (Weak duality). Let (z,y,A,r) be feasible for (FP)' and (u,v, A, s)
be feasible for (FDY . If, either

(1) Z Xi(fi — 8:9:) is pseudoinver in T with respect to n for fired y and

- E Ai(fi —rigi) is strictly pseudoinvez in y with respect to £ for fized
K
x,zgr
(i) 3 N(fi — sigq) is strictly pseudoinvez in x with respect to n for fired y
ieK
and — Y, Ai(fi —rigi) is pseudoinvez in y with respect to £ for fizxed z,
ieK
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then r £ s.
Proof (i). By (6) and (9), we have

~(n(z,u) +u)" | 3 AV file,v) = :Vagi(u,)) | <0,

€K
or
7](11', U)T Z ’\i(vzfi(uvv) - sivzgi(ua 'U))
icK
> uTZ)\ Vo fi(u,v) — 8;Vz0i(u,v)) > 0, (using (7)).
icK
On using pseudoinvexity of Y Ai(fi — s:9:) in z, it follows that

11714
Y Ailfilw,v) — sigilw,v) 2 Y Ml filw,v) — sigi(u, v)).
i€K i€k
The above inequality along with (5) gives
Y Ml film,v) — sigi(a,v)) > 0, (11)
i€K
Similarly, by (2), (3) and (10), we get

~§(’U, y)T Z )\i(vyfi(-"?; y) - TiVygi(:C, y)) >0,

i€K
which on using strict pseudoinvexity of — Y A;(fi — 7:¢;) in y implies
i€K
=Y N fie,0) — rigil@, ) > - 3 Alfilo,) - rigi(e,)) = 0, (by (1),
€K €K
That is,
=Y Xl fil@,v) —rigi(z,v)) > 0. (12)
ieK
Combining (11) and (12), we get Z Ai(r; — 8i)gi(z,v) > 0. Since \; > 0 and
ieK
gi(z,v) >0, i € K, therefore r £ s.
(ii). Proof follows on the similar lines of (i). O

Theorem 2 (Strong duality). Let (%,7,),7) be weakly efficient for (FP)' and
A=A, fired in (FD)'. Assume that
(A) the matriz Y- Mi(Vyy fi(Z, §) —F:Vyy9i(Z, T)) is positive or negative def-
i€k
inite;
(B) the set (Vyf1(Z,9) —T1Vyq1(Z,9))s- - » (Vy fu(Z,§) — Tk Vy9k(Z, 5))] is
linearly independent.
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Then (Z,7, A, T) is a feasible solution of (FD)' and the objective values of (FP)'
and (FD)' are equal.

If, the hypotheses of weak duality (Theorem 1) are satisfied for all feasible
solutions of (FP) and (FDY, then (Z,§,\,7) is weakly efficient for (FD)'.

Proof. Since (Z,7, A, ) is weakly efficient solution for (FP)’, then by Fritz John
type necessary conditions [16}, there exist « € R*,3 € R*,y € C3,n € R and
¢ € R* such that

—Bigi — Ai(Vyg:) (v —n§) =0, i € K, (13)
Z ﬂi[(vzfi - 7—"-ivmg'i)
ieK
+ 3 Ri(Vyefi = 7iVyag:)(y = 1))z — 7) 2 0, Vz € Cy, (14)
i€cK
> (B = A )(Vy fi = 7iVqg:)
icK
+ 3 Xi(Vyy fi = 7iVyyg:) (v — 1) = 0, (15)
i€eK
(y=m9) T (Vyfi — FiVygs) — & =0, i € K, (16)
¢rx=0, (17)
(o, B8,7,m,€) #0, (18)
a>0,7€Cyn>0,6>0. (19)

In view of A > 0 and £ > 0, it readily follows from (17) that £ = 0. Therefore
from (16), we have
(v- 773/) (Vyfi —7iVygi) =0, i € K. (20)

On multiplying (15) by (y — n7) and using (20), we get

(V=0T | D M(Vyyfi — 7iVyy) | (v —n8) =0,
i€EK

which by hypothesis (A) gives
Y =ny. (21)
Therefore, from (15), we have
> (B — nh)(Vy fi — 7iVyg:) = 0.
icK
This, in view of hypothesis (B), yields
B:i =i, i € K, ie., =1\ (22)
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If n = 0, then from {22), 8 = 0. From (13) and (21), we have o; =0, i € K
i.e.,, a=0. Also, from (21), v = 0. This contradicts (18). Hence n > 0, therefore
B > 0. Thus from (21), § € Cy. Further, by (21) and (14), for all z € Cy,

Z BilVsfi — 7V g (z — ) > 0,
i€K
which along with (22) and 1 > 0, gives

Z 5\,~[me¢ —7iVagi)(z — ) > 0. (23)
ieK
Let € C;. Then z+ Z € C}, and so inequality (23) implies that S~ X[V fi —
B i€k
7iVagilz > 0, for every z € Cy, e, — Y M[Vafi — 7iV.0i) € Cf. Also, by
ick B
letting = 0 and = = 27 in inequality (23} simultaneously, we get ) X[V fi—
_ icK
7iV29:)T = 0. Thus, (Z,7, A, 7) is a feasible solution of (FD)’ and the objective
values are equal. The weak efficiency for (FD) thus follows from weak duality
(Theorem 1). O

We now merely state the following converse duality theorem as its proof would
run analogous to Theorem 2.

Theorem 3 (Converse duality). Let (1,7, )\, 3) be weakly efficient for (FD)
and A = A, fized in (FP)'. Assume that

(1) the matriz Y A (V” fi(@,7) — 5 V2e0: (4, "é)) is positive or negative
definite; e
(II) the set [(v, F1(8,9) — 51V291(8,9)), ..., (Vo fi (8 B) — gkvxgk(a,ﬁ))]
is linearly independent.
Then (@, 7, A, 8) is a feasible solution of (FP)' and the objective values of (FP)
and (FD)' are equal.

If, the hypotheses of weak duality (Theorem 1) are satisfied for all feasible
solutions of (FP)' and (FDY, then (4,9, )\, §) is weakly efficient for (FP).

4. Self duality

A mathematical programming problem is said to be self dual, if it is formally
identical with its dual, that is, the dual can be recast in the form of the primal.
In order to present a better view of the concept of self duality, we shall consider
here the original problems (FP) and (FD) instead of their equivalents (FP)’ and
(FDY.

Let z,y,u,v € C. The function f;(u,v), ¢ € K is said to be skew symmetric
if

fi(u’ ’U) = —fi("'}v u)v ie K,
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for all u,v in the domain of f; and the function g;(u,v), i € K is said to be
symmetric if g;{u,v) = gi(v,u), ¢ € K, for all «,v in the domain of g;.

Theorem 4 (Self duality). If fi, i € K is skew symmetric and g;, i € K is
symmetric, then (FP) is a self dual. Also, if (FP) and (FD) are dual problems
and (z°,4°, \%) is a joint weakly efficient solution, then so is (y°,z°, A%) and
fi(wo;yo) .
——r =0, 1€K
9i(z°,4°)
Proof. The dual (FD) can be written as a minimization problem:

e (RO )
(FD) Minim (91(% mIE gk(u,v)>

subject to
- Z )\i(gi(ur U)vwfi(u1 ’U) - fi(u:v)vzgi(u; 'U)) € C*a
€K
uT D Xi(gi(w, v) Ve fi(u,v) — filw,v)Vagi(u,v)) <0,
€K

A>0,veC,

which because of V. f(u,v) = =V, f(v,u) and Vg(u,v) = Vyg(v,u) is trans-
formed to

(FD)* Minimize (f (v, u) fk(v,u)>

91(v, )" gr(v,u)

subject to
> 2ilg:(0, W)V, filv,u) - fi(v,u)Vygi(v,u)) € C*,
ieK
uT Y Ni(gi(v,u)Vy fi(v, ) — fi(v,0) Vygi(v,0) > 0,
€K

A>0,veC.

This shows that (FD)* is formally identical to (FP), that is, the objective
and the constraints are identical. Thus (FP) becomes self dual.

It is easily shown that the feasibility of (z,y, A) for (FP) implies the feasibility
of (y,z,A) for (FD) and vice-versa.

Since (2% 4% X%) is a joint weakly efficient solution, the extreme values of
(FP) and (FD) are equal to

f i(mo, yO) .
——< {eK.
gi(=°,9°)
From self duality, (3%, 2%, A%) is feasible for (FP) as well as for (FD). Therefore
(2%, 4%, A%) is weakly efficient for (FP) implies weak efficiency of (y°,z°, A°) for
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(FD). By similar argument, (y°,z% %) is weakly efficient for (FP). Also, the
two objective values are equal to

(0,0 0
fl(y ’x),ZEK

Therefore,
£i@®,9°) _ £i(y°.2%) ic K
9i(z% %) iy, 2%)’
. Ji (xo’ y()) .
= __.—gi(:co,yo)’ 1€ K,
(by the skew symmetry of f; and symmetry of g;). Hence
f i(xoi yO) .
——_"gz(xo’yo) = 07 1 € K
This completes the proof. O

5. Conclusion

In this paper, a pair of multiobjective fractional symmetric dual programs
over arbitrary cones is formulated and duality results are established under gen-
eralized invexity assumptions. Self duality theorem for such problems has also
been discussed and not appeared in the literature so far. Our results improve and
generalize a number of results existing in the literature. It appears that these
results can be further extended for minimax mixed integer programs, wherein
some of the primal and dual variables are constrained to belong to some arbitrary
sets, e.g., the sets of integers.
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