DOI QR코드

DOI QR Code

Recent Progress in Study and Development of Polymeric Scaffolds for Tissue Regeneration

조직재생을 위한 고분자 지지체의 최근 연구개발 동향

  • Joung, Yoon-Ki (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Ki-Dong (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Kwi-Deok (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Han, Dong-Keun (Biomaterials Research Center, Korea Institute of Science and Technology)
  • 정윤기 (아주대학교 분자과학기술학과) ;
  • 박기동 (아주대학교 분자과학기술학과) ;
  • 박귀덕 (한국과학기술연구원 바이오소재연구센터) ;
  • 한동근 (한국과학기술연구원 바이오소재연구센터)
  • Published : 2008.08.30

Abstract

In tissue engineering, scaffolds play an important role in the growth of cells to 3-D organs or tissues. For the success of tissue engineering, they should be mimicked to meet the requirements of natural extracellular matrix (ECM) in the body, such as mechanical properties, adhesiveness, porosity, biodegradability, and growth factor release, etc. Contrary to other materials, polymeric materials are adequate to engineer scaffolds for tissue engineering because controlling the structure and the ratio of components and designing various shapes and size are possible. In this review, the importance, major characteristics, processes, and recent examples of polymeric scaffolds for tissue engineering applications are discussed.

Keywords

References

  1. R. Langer, J.P. Vacanti, "Tissue engineering", Science vol. 260, pp. 920-926, 1993 https://doi.org/10.1126/science.8493529
  2. M.P. Lutolf, J.A. Hubbell, "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering", Nat. Biotechnol. vol. 23, pp. 47-55, 2005 https://doi.org/10.1038/nbt1055
  3. S.A. Catledge, Y.K. Vohra, S.L. Bellis, A.A. Sawyer, "Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials", J. Nanosci. Nanotechnol. vol. 4, pp. 986-989, 2004 https://doi.org/10.1166/jnn.2004.137
  4. X. Liu, P.X. Ma, "Polymeric scaffolds for bone tissue engineering", Ann. Biomed. Eng. vol. 32, pp. 477-486, 2004 https://doi.org/10.1023/B:ABME.0000017544.36001.8e
  5. X. Liu, P.X. Ma, "Polymeric scaffolds for bone tissue engineering", Boca Raton, FL: CRC Press, 2006
  6. L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Venjak-Novakovic, D. Kaplan, "Silk implants for the healing of critical size bone defects", Bone vol. 37, pp. 688-698, 2005 https://doi.org/10.1016/j.bone.2005.06.010
  7. L. Huang, J. Hu, L. Lang, X. Wang, P. Zhang, X. Jing, X. Wang, X. Chen, P.I. Lelkes, A.G. Macdiarmid, Y. Wei, "Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer", Biomaterials vol. 28, pp. 1741-1751, 2007 https://doi.org/10.1016/j.biomaterials.2006.12.007
  8. M.E. Furth,, A. Atala, M.E. Van Dyke, "Smart biomaterials design for tissue engineering and regenerative medicine", Biomaterials vol. 28, pp. 5068-5073, 2007 https://doi.org/10.1016/j.biomaterials.2007.07.042
  9. R.L. Juliano, S. Haskill, "Signal transduction from the extracellular matrix", J. Cell Biol. vol. 120, no. 3, pp. 577-585, 1993 https://doi.org/10.1083/jcb.120.3.577
  10. P.L. Jones, C. Schmidhauser, M.J. Bissell, "Regulation of gene expression and cell function by extracellular matrix", Crit. Rev. Eukaryot. Gene Expr. vol. 3, no. 2, pp. 137-154, 1993
  11. S. Kidoaki, I.K. Kwon, T. Matsuda, "Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques", Biomaterials vol. 26, pp. 37-46, 2005 https://doi.org/10.1016/j.biomaterials.2004.01.063
  12. E.D. Boland, T. Telemeco, D.G Simpson, G. Wnek, G. Bowlin, "Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering", J. Biomed. Mater. Res. vol. 71B, pp. 144-152, 2004 https://doi.org/10.1002/jbm.b.30105
  13. K.J. Shields, M.J. Beckman, G.L. Bowlin, J.S. Wayne, "Mechanical properties and cellular proliferation of electrospun collagen type II", Tissue Eng. vol. 10, pp. 1510-1517, 2004 https://doi.org/10.1089/ten.2004.10.1510
  14. C.M. Nelson, "Emergent patterns of growth controlled by multicellular form and mechanics", Proc. Natl. Acad. Sci. USA vol. 102, pp. 11594-11599, 2005 https://doi.org/10.1073/pnas.0502575102
  15. H. Zhang, "Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering", Macromol. Biosci. vol. 5, pp. 477-489, 2005 https://doi.org/10.1002/mabi.200400202
  16. R. Murugan, S. Ramakrishna, "Design strategies of tissue engineering scaffolds with controlled fiber orientation", Tissue Eng. vol. 13, pp. 1845-1866, 2007 https://doi.org/10.1089/ten.2006.0078
  17. J.J. Norman, T.A. Desai, "Methods for fabrication of nanoscale topography for tissue engineering scaffolds", Ann. Biomed. Eng. vol. 34, pp. 89-101, 2006 https://doi.org/10.1007/s10439-005-9005-4
  18. D.E. Ingber, "Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology", Circ. Res. vol. 91, pp. 877-887, 2002 https://doi.org/10.1161/01.RES.0000039537.73816.E5
  19. A. Engler, S. Sen, H.L. Sweeney, D.E. Discher, "Matrix elasticity directs stem cell lineage specification", Cell vol. 126, pp. 677-689, 2006 https://doi.org/10.1016/j.cell.2006.06.044
  20. L.E. Niklason, J. Gao, W.M. Abbott, K.K. Hirschi, S. Houser, R. Marini, R. Langer, "Functional arteries grown in vitro", Science vol. 284, pp. 489-493, 1999 https://doi.org/10.1126/science.284.5413.489
  21. H. Zhang, D.W. Hutmacher, F. Chollet, A.N. Poo, E. Burdet, "Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering", Macromol. Biosci. vol. 5, pp. 477-489, 2005 https://doi.org/10.1002/mabi.200400202
  22. A.G. Mikos, G. Sarakinos, S.M. Leite, J.P. Vacanti, R. Langer, "Laminated three-dimensional biodegradable foams for use in tissue engineering", Biomaterials vol. 14, pp. 323-330, 1993 https://doi.org/10.1016/0142-9612(93)90049-8
  23. L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, "Biodegradable polymer scaffolds for tissue engineering", Biotechnology vol. 12, pp. 689-693, 1994 https://doi.org/10.1038/nbt0794-689
  24. H. Lo, M.S. Ponticiello, K.W. Leong, "Fabrication of controlled release biodegradable foams by phase separation", Tissue Eng. vol. 1, pp. 15-28, 1995 https://doi.org/10.1089/ten.1995.1.15
  25. Z. Ma, C. Gao, Y. Gong, J. Shen, "Micro-spheres as porogen to fabricate poly(l-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering", J. Biomed. Mater. Res. vol. 67, pp. 610-617, 2003
  26. K. Khang, D.W. Kim, M.S. Kim, "Tissue engineering", Seoul, Hanrimwon Press, 2008
  27. Y.M. Ju, K. Park, J.S. Son, J.-J. Kim, J. Rhie, D.K. Han, "Beneficial effect of hydrophilized porous polymer scaffolds in tissue-engineered cartilage formation", J. Biomed. Mater. Res. Part B: Appl. Biomater. vol. 85B, pp. 252-260, 2008 https://doi.org/10.1002/jbm.b.30943
  28. H.J. Jung, K. Park, J.-J. Kim, J.H. Lee, K.-O. Han, D.K. Han, "Effect of RGD-immobilized dual pore PLLA scaffolds on chondrocyte proliferation and ECM production", Artif. Organs in press, 2008
  29. G. Chen,., D. Akahane, N. Kawazoe, K. Yamamoto, T. Tateishi, "Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge", Mater. Sci. Eng. C vol. 28, pp. 195-201, 2008 https://doi.org/10.1016/j.msec.2006.12.009
  30. H. Liu, H. Fan, Y. Wang, S.L. Toh, J.C.H. Goh, "The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering", Biomaterials vol.. 29, pp. 662-674, 2008 https://doi.org/10.1016/j.biomaterials.2007.10.035
  31. K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo, S. Ramakrishna, "Recent advances in polymer nanofibers", J. Nanosci. Nanotech. vol. 4, pp. 52-65, 2004
  32. X. Wen, D. Shi, N. Zhang, "Applications of nanotechnology in tissue engineering", in: H. Nalwa (Ed.), Handbook of Nanostructured Biomaterials and their Applications in Nanobiotechnology, American Scientific Publishers, Stevenson Ranch, CA, pp. 1-23, 2005
  33. Z. Ma, M. Kotaki, R. Inai, S. Ramakrishna, "Potential of nanofiber matrix as tissue-engineering scaffolds", Tissue Eng. vol. 11, pp. 101-109, 2005 https://doi.org/10.1089/ten.2005.11.101
  34. S. Zhang, "Fabrication of novel biomaterials through molecular self-assembly", Nat. Biotech. vol. 21, pp. 1171-1178, 2003 https://doi.org/10.1038/nbt874
  35. J.D. Hartgerink, E. Beniash, S.I. Stupp, "Self-assembly and mineralization of peptide-amphiphile nanofibers", Science vol. 294, pp. 1684-1688, 2001 https://doi.org/10.1126/science.1063187
  36. L.A. Smith, P.X. Ma, "Nano-fibrous scaffolds for tissue engineering", Colloids Surfaces B, Biointerf. vol. 39, pp. 125-131, 2004 https://doi.org/10.1016/j.colsurfb.2003.12.004
  37. J.D. Hartgerink, E. Beniash, S.I. Stupp, "Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of selfassembling materials", Proc. Nat. Acad. Sci. USA vol. 99, pp. 5133-5138, 2002 https://doi.org/10.1073/pnas.072699999
  38. V.J. Chen, P.X. Ma, "Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores", Biomaterials vol. 25, pp. 2065-2073, 2004 https://doi.org/10.1016/j.biomaterials.2003.08.058
  39. D.H. Reneker, I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning", Nanotechnology vol. 7, pp. 216-223, 1996 https://doi.org/10.1088/0957-4484/7/3/009
  40. S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, S. Ramakrishna, "Biomimetic electrospun nanofibers for tissue regeneration", Biomed. Mater. vol. 1, pp. R45-R53, 2006 https://doi.org/10.1088/1748-6041/1/3/R01
  41. C.P. Barnes, C.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin, "Nanofiber technology: designing the next generation of tissue engineering scaffolds", Adv. Drug Deliv. Rev. vol. 59, pp. 1413-1433, 2007 https://doi.org/10.1016/j.addr.2007.04.022
  42. K. Park, H.J. Jung, J.J. Kim, K.D. Ahn, D.K. Han, Y.M. Ju, "Acrylic acid-grafted hydrophilic electrospun nanofibrous poly (L-lactic acid) scaffold", Macromol. Res. vol. 14, no. 5, pp. 552- 558, 2007 https://doi.org/10.1007/BF03218723
  43. K. Park, Y.M. Ju, K.D. Ahn, D.K. Han, "Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts", J. Biomater. Sci. Polym. Edn. vol. 18, no. 4, pp. 369-382, 2007 https://doi.org/10.1163/156856207780424997
  44. S. Heydarkhan-Hagvall, K. Schenke-Layland, A.P. Dhanasopon, F. Rofail, H. Smith, B.M. Wu, R. Shemin, R.E. Beygui, W.R. MacLellan, "Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering", Biomaterials vol. 29, pp. 2907-2914, 2008 https://doi.org/10.1016/j.biomaterials.2008.03.034
  45. K. Ma, C.K. Chan, S. Liao, W.Y.K. Hwang, Q. Feng, S. Ramakrishna, "Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells", Biomaterials vol. 29, pp. 2096-2103, 2008 https://doi.org/10.1016/j.biomaterials.2008.01.024
  46. M.S. Jhon, J.D. Andrade, "Water and hydrogels", J. Biomed. Mater. Res. vol. 7, pp. 509-522, 1973 https://doi.org/10.1002/jbm.820070604
  47. K.Y. Lee, D.J. Mooney, "Hydrogels for tissue engineering", Chem. Rev. vol. 101, no. 7, pp. 1869-1879, 2001 https://doi.org/10.1021/cr000108x
  48. M.A. LeRoux, F. Guilak, L.A. Setton, "Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration", J. Biomed. Mater. Res. vol. 47, pp. 46-53, 1999 https://doi.org/10.1002/(SICI)1097-4636(199910)47:1<46::AID-JBM6>3.0.CO;2-N
  49. T.J. Deming, "Facile synthesis of block copolypeptides of defined architecture", Nature vol. 390, pp. 386-389, 1997 https://doi.org/10.1038/37084
  50. K.M. Park, D.H. Kim, Y.K. Joung, J.W. Shin, K.D. Park, "Injectable chitosan-Pluronic hydrogel releasing osteogenic protein-1 for the regeneration of intervetebral disc", Biomater. Res. vol. 12, no. 1, pp. 24-28, 2008
  51. Y.K. Joung, J.H. Choi, K.M. Park, K.D. Park, "PLGA microparticle- embedded thermo-sensitive hydrogels for sustained release of hydrophobic drugs", Biomed. Mater. vol. 2, no. 4, pp. 269-273, 2007 https://doi.org/10.1088/1748-6041/2/4/010
  52. K.M. Park, Y.K. Joung, S.Y. Lee, M.C. Lee, K.D. Park, "Injectable RGD-conjugated chitosan hydrogel for cartilage regeneration", Macromol. Res. in press
  53. D.H. Go, Y.K. Joung, S.Y. Lee, M.C. Lee, K.D. Park, "Tetronic- PLA-Heparin hydrogel as a multi-functional scaffold for tissue regeneration", Macromol. Biosci. in press
  54. E. Lih, J.W. Bae, Y.K. Joung, K.D. Park, "In situ gel forming heparin-conjugated PLGA-PEG-PLGA copolymer", J. Bioact. Compat. Polym. in press
  55. Y.J. Jun, K.M. Park, Y.K. Joung, K.D. Park, "In situ hydrogelation by stereocomplex formation of four-arm PEG-PDLA and PEG-PLLA block copolymers", Macromol. Res. in press
  56. H. Park, J.S. Temenoff, Y. Tabata, A.I. Caplan, A.G. Mikos, "Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering", Biomaterials vol. 28, pp. 3217-3227, 2007 https://doi.org/10.1016/j.biomaterials.2007.03.030
  57. A. Heymer, D. Haddad, M. Weber, U. Gbureck, P.M. Jakob, J. Eulert, U. Noth, "Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair", Biomaterials vol. 29, pp. 1473-1483, 2008 https://doi.org/10.1016/j.biomaterials.2007.12.003
  58. A. Pfister, R. Landers, A. Laib, U. Hubner, R. Schmelzeisen, R. Mulhaupt, "Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing", J. Polym. Sci. Part A: Polym. Chem. vol. 42, pp. 624-638, 2004 https://doi.org/10.1002/pola.10807
  59. N.E. Fedorovich, J.R. De Wijn, A.J. Verbout, J. Alblas, W.J.A. Dhert, "Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing", Tissue Eng. vol. 14, no. 1, pp. 127-133, 2008 https://doi.org/10.1089/ten.2007.0158
  60. K. Igawa, M. Mochizuki, O. Sugimori, K. Shimizu, K. Yamazawa, H. Kawaguchi, K. Nakamura, T. Takano, R. Nishimura, S. Suzuki, M. Anzai, U. Chung, N. Sasaki, "Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer", J. Artif. Organs vol. 9, pp. 234-240, 2006 https://doi.org/10.1007/s10047-006-0347-y
  61. G. Chan, D.J. Mooney, "New materials for tissue engineering: towards greater control over the biological response", Trends Biotechnol. vol. 26, no. 7, pp. 382-392, 2008 https://doi.org/10.1016/j.tibtech.2008.03.011
  62. A. Khademhosseini, R. Langer, "Microengineered hydrogels for tissue engineering", Biomaterials vol. 28, pp. 5087-5092, 2007 https://doi.org/10.1016/j.biomaterials.2007.07.021
  63. N. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, "Hydrogels in biology and medicine", Adv. Mater. vol. 18, pp. 1-17, 2007
  64. S.M. Dang, M. Kyba, R. Perlingeiro, G.Q. Daley, P.W. Zandstra, "Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems", Biotechnol. Bioeng. vol. 78, no. 4, pp. 442-453, 2002 https://doi.org/10.1002/bit.10220
  65. W.G. Koh, A. Revzin, M.V. Pishko, "Poly(ethylene glycol) hydrogel microstructures encapsulating living cells", Langmuir vol. 18, no. 7, pp. 2459-2462, 2002 https://doi.org/10.1021/la0115740
  66. M.S. Hahn, J.S. Miller, J.L. West, "Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior", Adv. Mater. vol. 18, no. 20, pp. 2679-2684, 2006 https://doi.org/10.1002/adma.200600647
  67. S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A. Stone, "Generation of monodisperse particles by using microfluidics: control over size, shape, and composition", Angew. Chem. Int. Ed. Engl. vol. 44, no. 5, pp. 724-728, 2005 https://doi.org/10.1002/anie.200462226
  68. D.C. Pregibon, M. Toner, P.S. Doyle, "Multifunctional encoded particles for high-throughput biomolecule analysis", Science vol. 315, no. 5817, pp. 1393-1396, 2007 https://doi.org/10.1126/science.1134929
  69. J. Fukuda, A. Khademhosseini, Y. Yeo, X. Yang, J. Yeh, G. Eng, "Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures", Biomaterials vol. 27, pp. 5229-5267, 2006
  70. J. Yeh, Y. Ling, J.M. Karp, J. Gantz, A. Chandawarkar, G. Eng, "Micromolding of shape-controlled, harvestable cell-laden hydrogels", Biomaterials vol. 27, pp. 5391-5398,2006 https://doi.org/10.1016/j.biomaterials.2006.06.005
  71. J.P. Rolland, B.M. Maynor, L.E. Euliss, A.E. Exner, G.M. Denison, J.M. DeSimone, "Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials", J. Am. Chem. Soc. vol. 127, no. 28, pp. 10096-10100, 2005 https://doi.org/10.1021/ja051977c
  72. G.T. Franzesi, B. Ni, Y. Ling, A. Khademhosseini, "A controlledrelease strategy for the generation of cross-linked hydrogel microstructures", J. Am. Chem. Soc. vol. 128, no. 47, pp. 15064- 15065, 2006 https://doi.org/10.1021/ja065867x
  73. A.N. Stachowiak, A. Bershteyn, E. Tzatzalos, D.J. Irvine, "Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties", Adv. Mater. vol. 17, no. 4, pp. 399-403, 2005 https://doi.org/10.1002/adma.200400507
  74. J.T. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.P. Vacanti, "Microfabrication technology for vascularized tissue engineering", Biomed. Microdev. vol. 4, no. 3, pp. 167-175, 2002 https://doi.org/10.1023/A:1016040212127
  75. C. Fidkowski, M.R. Kaazempur-Mofrad, J. Borenstein, J.P. Vacanti, R. Langer, Y. Wang, "Endothelialized microvasculature based biodegradable elastomer", Tissue Eng. vol. 11, no. 1-2, pp. 302-309, 2005 https://doi.org/10.1089/ten.2005.11.302
  76. M. Cabodi, M.W. Choi, J.P. Gleghorn, C.S. Lee, L.J. Bonassar, A.D. Stroock, "A microfluidic biomaterial", J. Am. Chem. Soc. vol. 127, no. 40, pp. 13788-13789, 2005 https://doi.org/10.1021/ja054820t
  77. K.M. Chrobak, D.R. Potter, J. Tien, "Formation of perfused, functional microvascular tubes in vitro", Microvasc. Res. vol. 71, no. 3, pp. 185-196, 2006 https://doi.org/10.1016/j.mvr.2006.02.005
  78. A.P. McGuigan, M.V. Sefton, "Vascularized organoid engineered by modular assembly enables blood perfusion", Proc. Natl. Acad. Sci. USA vol. 103, no. 31, pp. 11461-11466, 2006
  79. V. Mironov, T. Boland, T. Trusk, G. Forgacs, R.R. Markwald, "Organ printing: computer-aided jet-based 3D tissue engineering", Trends Biotechnol. vol. 21, no. 4, 157-161, 2003 https://doi.org/10.1016/S0167-7799(03)00033-7
  80. P.X. Ma, "Biomimetic materials for tissue engineering," Adv. Drug Deliv. Rev. vol. 60, pp. 184-198, 2008 https://doi.org/10.1016/j.addr.2007.08.041
  81. X. Liu, P.X. Ma, "Polymeric scaffolds for bone tissue engineering", Ann. Biomed. Eng. vol. 32, pp. 477-486, 2004 https://doi.org/10.1023/B:ABME.0000017544.36001.8e
  82. P.X. Ma, R. Zhang, G. Xiao, R. Franceschi, "Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds", J. Biomed. Mater. Res. vol. 54, pp. 284-293, 2001 https://doi.org/10.1002/1097-4636(200102)54:2<284::AID-JBM16>3.0.CO;2-W
  83. R.C. Thomson, M.J. Yaszemski, J.M. Powers, A.G. Mikos, "Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration", Biomaterials vol. 19, pp. 1935- 1943, 1998 https://doi.org/10.1016/S0142-9612(98)00097-0
  84. K.G. Marra, J.W. Szem, P.N. Kumta, P.A. DiMilla, L.E. Weiss, "In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering", J. Biomed. Mater. Res. vol. 47, pp. 324-335, 1999 https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<324::AID-JBM6>3.0.CO;2-Y
  85. G. Wei, P.X. Ma, "Structure and properties of nano-hydroxyapatite/ polymer composite scaffolds for bone tissue engineering", Biomaterials vol. 25, pp. 4749-4757, 2004 https://doi.org/10.1016/j.biomaterials.2003.12.005
  86. K.M. Woo, V.J. Chen, P.X. Ma, "Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment", J. Biomed. Mater. Res. vol. 67A, pp. 531-537, 2003 https://doi.org/10.1002/jbm.a.10098
  87. K.M. Woo, J. Seo, R. Zhang, P.X. Ma, "Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds", Biomaterials vol. 28, pp. 2622-2630, 2007 https://doi.org/10.1016/j.biomaterials.2007.02.004
  88. G. Wei, P.X. Ma, "Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres," J. Biomed. Mater. Res.: Part A, vol. 78 pp. 306-315, 2006