DOI QR코드

DOI QR Code

ON FACTORIZATIONS OF THE SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES

  • Shi, Yi-Yun (School of Mathematical Sciences South China Normal University) ;
  • Zhao, Hao (School of Mathematical Sciences Nankai University)
  • Published : 2008.07.31

Abstract

For a pointed space X, the subgroups of self-homotopy equivalences $Aut_{\sharp}_N(X)$, $Aut_{\Omega}(X)$, $Aut_*(X)$ and $Aut_{\Sigma}(X)$ are considered, where $Aut_{\sharp}_N(X)$ is the group of all self-homotopy classes f of X such that $f_{\sharp}=id\;:\;{\pi_i}(X){\rightarrow}{\pi_i}(X)$ for all $i{\leq}N{\leq}{\infty}$, $Aut_{\Omega}(X)$ is the group of all the above f such that ${\Omega}f=id;\;Aut_*(X)$ is the group of all self-homotopy classes g of X such that $g_*=id\;:\;H_i(X){\rightarrow}H_i(X)$ for all $i{\leq}{\infty}$, $Aut_{\Sigma}(X)$ is the group of all the above g such that ${\Sigma}g=id$. We will prove that $Aut_{\Omega}(X_1{\times}\cdots{\times}X_n)$ has two factorizations similar to those of $Aut_{\sharp}_N(X_1{\times}\cdots{\times}\;X_n)$ in reference [10], and that $Aut_{\Sigma}(X_1{\vee}\cdots{\vee}X_n)$, $Aut_*(X_1{\vee}\cdots{\vee}X_n)$ also have factorizations being dual to the former two cases respectively.

Keywords

References

  1. M. Arkowitz, The group of self-homotopy equivalences-a survey, Groups of selfe-quivalences and related topics (Montreal, PQ, 1988), 170-203, Lecture Notes in Math., 1425, Springer, Berlin, 1990
  2. M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equivalences, The Cech centennial (Boston, MA, 1993), 1-25, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995 https://doi.org/10.1090/conm/181/02026
  3. M. Arkowitz and G. Lupton, On the nilpotency of subgroups of self-homotopy equivalences, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guixols, 1994), 1-22, Progr. Math., 136, Birkhauser, Basel, 1996
  4. M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133-154 https://doi.org/10.1016/S0166-8641(97)00162-4
  5. E. D. Farjoun and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), no. 3, 187-197 https://doi.org/10.1016/0040-9383(79)90002-8
  6. Y. Felix and A. Murillo, A bound for the nilpotency of a group of self homotopy equivalences, Proc. Amer. Math. Soc. 126 (1998), no. 2, 625-627 https://doi.org/10.1090/S0002-9939-98-04192-6
  7. P. J. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Publishers, New York-London-Paris 1965
  8. K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989), no. 2, 293-301 https://doi.org/10.2140/pjm.1989.136.293
  9. K. Maruyama, Localization of self-homotopy equivalences inducing the identity on homology, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 291-297 https://doi.org/10.1017/S0305004100069140
  10. P. Pavesic, On the group Aut#($X_{1}$ $\times$ . . . $\times$ $X_{n}$), Topology Appl. 153 (2005), no. 2-3, 485-492 https://doi.org/10.1016/j.topol.2003.07.023
  11. P. Pavesic, On the group $Aut_{\Omega}$(X), Proc. Edinb. Math. Soc. (2) 45 (2002), no. 3, 673-680
  12. P. Pavesic, Self-homotopy equivalences of product spaces, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 1, 181-197 https://doi.org/10.1017/S0308210500027529
  13. J. Rutter, Spaces of Homotopy Self-Equivalences, A survey. Lecture Notes in Mathematics, 1662. Springer-Verlag, Berlin, 1997
  14. H. B. Yu and W. H. Shen, The self-homotopy equivalence group of wedge spaces, Acta Math. Sinica (Chin. Ser.) 48 (2005), no. 5, 895-900