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FACE PAIRING MAPS OF FORD DOMAINS FOR CUSPED
HYPERBOLIC 3-MANIFOLDS

SuNGBOK HONG AND JUNGsoo KiMm

ABSTRACT. We will describe a way to construct Ford domains of cusped
hyperbolic 3-manifolds on maximal cusp diagrams and compute funda-
mental groups using face pairing maps as generators and Cannon-Floyd-
Parry’s edge cycles as relations. We also describe explicitly a cutting and
pasting alteration to reduce the number of faces on the bottom region
of Ford domains. We expect that our analysis of Ford domains will be
useful on other future research.

1. Introduction

A hyperbolic 3-manifold is a Riemannian 3-manifold of constant sectional
curvature —1. We will restrict our attention to a complete hyperbolic 3-
manifold with one torus cusp. Such a manifold M can be described as H? /T
where I' is a discrete torsion free subgroup of PSL2(C). Since M has a torus
cusp, I" has a rank 2 subgroup generated by parabolic elements. The subgroup
generated by parabolic elements fixing a point p in S% will be denoted by T'p.
Given a cusp ¢ which lifts to a fixed point p in S2,, a cusp neighborhood in M
is simply the projection to M of a horoball centered at p. A cusp neighborhood
in M lifts to a collection of horoballs in H® with disjoint interior as is shown
in figure 1. Let those horoballs expand until they collide each other as in fig-
ure 2. We can make the height of the horosphere at infinity be 1. The image of
interior of those horoballs gives a maximal cusp neighborhood. Topologically
a cusp neighborhood is homeomorphic to T? x [0, 00). Again expand maximal
horoballs further until they fill up the whole hyperbolic space H?. We may
regard horospheres as balloons which gently expand.

Now we can get a surface of collision with the unbounded horoball (horoball
at infinity) and this surface divides H? into two parts. Let F be the part
containing the unbounded horoball. The canonical choice of Ford domain is
F/T' and M can be obtained by pairing faces of F/Tw. (See [5]). In the case
of figure eight knot complement, I' is generated by two parabolic elements

Received November 18, 2006.

2000 Mathematics Subject Classification. Primary 57M50; Secondary 30F40.

Key words and phrases. cusp hyperbolic 3-manifold, Ford domain, face pairing map.
The first author is supported by Korea University Grant.

(©2008 The Korean Mathematical Society

1007



1008 SUNGBOK HONG AND JUNGSOO KIM

F1GURE 3. Ford domain of figure-eight knot complement.

whose euclidean translation lengths on the horosphere at infinity are 1 and 22/3
and the angle made by the two translations is Z. (See more details of maximal
cusp diagram in p.19 of [1]). In figure 3, we may see the shape of F/T, for
the figure eight knot complement with front-back and left-right sides identified
by parabolic elements fixing oco.

A face pairing € = {¢;} of the 3-ball B® sews together the 2-cells of a cellu-
lation of the boundary 2-sphere S? of B? isomorphically in pairs, every 2-cell
being identified with a different 2-cell. For a face f of S? let ¢; denote the
cellular homeomorphism by which ¢; identifies f with ¢;(f). Let ~ be the
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equivalence relation on the set of edges of S? generated by e ~ €;(e) when e is
an edge of f. We call the resulting equivalence classes edge cycles.
If an edge e of the face f is identified with an edge e’ by a face pairing map

€; then it will be denoted by e i) e.

Given a face pairing €, let M = B®/e and let M, be the open manifold
obtained by deleting the vertices from M. If M is already a manifold, then M
and M, have the same fundamental group. The following classical result which
is quoted from section 2 of [3] will be used to compute fundamental groups of
cusped hyperbolic 3-manifolds.

Proposition 1.1. The open manifold My has fundamental group by the gen-
erators and relations
<.’,E1,.’L‘2,... I Wl,Wz,...>

where the generators T1,Zz,... correspond to the face-pairing maps and the
relations Wy, Ws, ... are the words arising from edge cycles.

We use ideal triangulations to find face-pairing of bottom faces of Ford do-
mains. But if ideal triangulations were given from the outset then we can com-
pute fundamental groups of cusped hyperbolic 3-manifolds more conveniently
by using face pairing of ideal tetrahedra. We will describe explicitly how to
obtain a Ford domain on maximal cusp diagram for the sibling of figure eight
knot complement in section 4 and we explain a cutting and pasting method to
reduce the number of faces on the bottom region of Ford domains in section 5.

2. Face-pairing maps

In Section 2 and Section 3 we consider only the case of figure-8 knot comple-
ment M. It is known that M is obtained by gluing boundary faces of two ideal
tetrahedra. We may reconstruct F'/T's, of figure 3 from an ideal triangulation
of M.

First expand a cusp neighborhood until the whole manifold M is filled. This
procedure can be seen in figure 4.

Cut along the collision locus and flatten out then we have 8 triangles in the
interior of ideal tetrahedra (4 triangles in each tetrahedron). Each of 8 triangles
has a barycentric subdivision so we have 48 triangles (See figure 5). Now we
have 8 tetrahedra from original 2 tetrahedra and each tetrahedron has exactly
one ideal vertex. We reglue 8 tetrahedra so that ideal vertices are identified to
the vertex at infinity (See figure 6).

We may consider that M is homeomorphic to B* with face-pairing of 52
2-cells - 48 on bottom and 4 in sides but one vertex at oo is deleted from 8B3.

In figure 7, we take a base point in F. A loop is obtained by the sum of lines
with arrows the directions of which tell how faces are paired. So it is natural
to take the generators of fundamental group as face-pairing maps. The natural
correspondence between face-pairing maps and loops can be seen in figure 9.
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C(back}

FIGURE 4. Expand cusp neighborhood until whole M is filled.

But the question is how we get the relations those make. The relations are
made from all possible trivial loops. As in figure 8 all possible trivial loops
are decomposed into small trivial loops, each of which goes around exactly one
edge in M. So if we have face-pairing map expressions for the all such small
loops, then we are done.

Now we find expressions for trivial loops, each of which goes around exactly
one edge in M.

In figure 9, the loop goes around three edges. Let the face-pairing maps
determined by the loop be a, b, ¢ in that order as shown in the figure. Figure
10 shows the previous loop of figure 9 inside the manifold M. It is easy to see
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F1GURE 6. Reglue all tetrahedra with flattened bottom faces.

that this loop bounds a 2-cell so it is a trivial loop. This implies we have a
relation abc = id.
The fundamental group of M can be described as follows;

mi (M) = {(z1,Z3,...,Zn | x; is the face-pairing maps,

relations obtained by trivial loops from edge cycles)

But in the case of figure eight knot complement, 26 face-pairing map can
exist, so are generators of m1(M) (See figure 11). In figure 11, we use the
notation m —n =1 — k where 1 <m, ! < 8 and 1 < n, k < 6 to denote that
n th triangle in the large triangle with number m is paired with k th triangle in
the large triangle with number [. For example, 3 —1 = 7 —1 means that the 1st
triangle in the large triangle with number 3 is paired with the 1st triangle in the
large triangle with number 7. Those two triangles are paired by a hyperbolic
isometry so their shapes (corresponding angles) have to be preserved. Those
numbering of triangles are originated from the numbering of triangles in figure
5. Those pairing of triangles are determined by the face pairings by which the
figure eight knot complement is obtained from two ideal tetrahedra. If we can
reduce the number of 2-cells, then the number of face-pairing maps are reduced
and so are the number of generators.
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FiGure 8. A trivial loop can be decomposed into smaller
loops each of which goes around only one edge.

FI1GURE 10. The loop of figure 9 in M.
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By the cutting and pasting alteration which we will discuss in Section 5,
(figure 12) we are able to reduce the number of 2-cells from 52 to 10 (See
figure 12). There F; = F; means that the face F; is paired with the face Fj.

Now we obtain face-pairing maps as follows;

) Q1 Qv Q2 Q3 Q4
61'F1%F3:>(Q5 Q2 Qo Qr Qs)

. Qx Qr Qs Qo Qu Qn s
62'F‘?_}F‘si(Qw Qu Q2 @13 Q23 Qu Qn)

) @s Qo Qu @ s
GB'F“’FH’(Qm Qe Qi Qus Q1s>

€: Fr = Fyg =

(Ql Qe Q2 Q7 Qs Qe @ Qu Qv Qs Gis OO)
Qs Q3 Q2 Qu Qs Qu Q12 Q13 Q2 Qi Qv ©

Qs Qs 00>
Qs 1 o0

3. The figure eight knot complement

65:F8—)F1():>(

To compute the fundamental group of the figure eight knot complement,
first we enumerate all possible edge cycles as follows;

-1 -1 -1
Q1Q10 =1 Q5 Q22 4 Q12Q11 25 QsQ7 T3 QuQs 4501 Q10
-1 -1
Q10GQ2 —6—1> Q2206 —3)@11629 ﬁ) Q17Q14 Ei>Q3 Q20 64—)@19@2
-1 —~1
Q205 5 Q6Q7 4 QoQ21 2 Q13Qa3 S5 Q10Q17 25 Q2Qs
-1 -1
Q2Q7 22 Q10011 2 Q16Q17 4 Q14Q25 25 Q20021 45 Q2Q7

-1 -1
€2 € €3 €4 €
Q3Qs —5 Q12Q13 25 Q5Q10 — Q15Q16 — Q18Q14 25 Qs

-1 1
€4 €5 € €
Q1500 — Q1800 — Q400 A5 Q100 54 Q1500

Q15Q15 =2 Q1Q1 =5 QsQ5 =25 Q1sQrs-

If we denote the generator which is determined by ¢; by x;, then we have the
following 7 relations from the above edge cycles;

— - | .
zpagxsxy zyt = id,

- -1 .
T1 X423, 1 z, =id,

— —1 .
T1 T4 T2 T, ! T, =id,
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F1GURE 11. The glueing pattern of bottom faces

Qon Qo1 ‘?9 Q13 Q23
F1=F3, F2=F5 F4=F6,
F7=F9, F8=F10.

FicURE 12. Reduce the number of 2-cells by regrouping triangles.
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To I3 T4 z;l :c4_1 =id,

Toxytzazgzyt =id,

zyxsxy oyt =id,
T X1 X3 = id.
Reduce z5 by using the 7th relation then we have the following 6 relations:

1

- - -1 .
nyzezy o7zt =1d,

-1 -1 .
T1T4T3T, 1 z; =id,

1 T4 T2 334—1 562_1 = ld,

To X3 T4 x;l :c4"1 =id,

T3 a:4_1 T3 Iy :c3_1 =id,
zoxy eyt oyt 2 s = id.
Reduce z3 by using the 2nd relation and then we have the following 5 rela-

tions:
— — —1 .
Ty zazy zylzyt =1id,

Ty za a2yt =id,

zozylzy  za o sz 2yt =1id,

_ o .
1 1:17113;'41'23:41'2 x41x1x4=1d,

ToTy Xy
zazy et wizgar o oyt a7 2y g =id.

Reduce z5 by using the 1st relation then we have 2 relations. Here we point

out that the 2nd, 3rd relations are the same and the 4th, 5th relations are the

same after reducing zs. So we may delete additional 3rd and 5th relations.
I X4 xl_l a:4_1 T :154_1 :cl_l rqxy = id,

-1

Ty w;l

T a;;{l :1:1_1 T4 xl_l x4_1 T1 4 xl_l T4 :c4_1 1 T4 = id,
Reduce z1z;'z7 z4 by using the 1st relation then we have one relation
1 4
expressed by 9 words.

1 1

T1T1 T4T] Ty X1 ac4_1 ml_l T4 = 1 [T1, Z4] [xl,le] =id.
Finally we have the following presentation for the fundamental group of the
figure eight knot complement when we replace x; by = and z4 by y. It coincides

with what Cannon, Floyd and Parry obtain in section 6 of [3].
Theorem 3.1.
m (M) = (z, y| z[z,y][e,y™] = id).

Remark. All computations of edge cycles and free-group simplifications are
done by the program made by one of the authors (Jungsoo Kim).
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FI1GURE 13. The glueing diagram for sibling of figure-8 knot complement.

4. The sibling of the figure eight knot complement

There are only two orientable one cusped hyperbolic 3-manifolds which can
be constructed from two ideal tetrahedra (see [2]). They are figure-8 knot
complement and its sibling. We will denote the sibling manifold by M’. The
sibling manifold is made by glueing each face of the left hand tetrahedron
with a corresponding face of the right hand tetrahedron with a flip about the
indicated axis as is shown in figure 13. The manifold M’ is the punctured torus
bundle where the monodromy has trace —3 (see section 12 of [4]). M’ can also
be obtained by (5,1) Dehn surgery on one of the Whitehead link component
and hence its first homology is Z & Z5. We will describe how to construct a
Ford domain of sibling manifold on a maximal cusp diagram and compute the
fundamental group of M’.

First of all, expand the horoballs and cut along its collision locus and reglue
the 8 tetrahedra as in the case of figure-8 knot complement. I'_ is generated
by two parabolic elements of translation length 2 and v/3 and the angle made
by the two translation is %. Figure 14 shows the bottom face of a Ford domain
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rdla 1
7 NI
7-1 | 7-2 1-5 1 1-6
7-6 XK7-3 1-4
474 | G5 |7-4 982 | 2231-3|1-2
4-3> 46 21X 2-4
42 | 41 -6 [2-5
N prdl
VAY ~ T
5-1 | 5-2 3-6 | 3-5
56K 5-3 3-1K a4
_ _ -3 | 8-
4| 6555 | 5-4 822 [3-
6-3 K 6-6 8-4>k -1
6-2 |6-1 8-5|8-6
VoY 21N
A\ NI

F1GURE 14. Bottom face of Ford domain

FIGURE 15 FIGURE 16
Bottom-flattened Ford domain Original shape of Ford domain
of M’. of M'.

with labels according to figure 13 and figure 17 describes the glueing pattern
of the bottom region.

Figure 15 describes the bottom faces of flatten Ford domain of M’ from the
original shape of bottom region of the Ford domain (figure 16) of M'. By the
cutting and pasting alteration which we will discuss in section 5, we are able
to reduce the number of faces from 52 to 12 as in figure 18.

By reshaping the regions appeared in figure 14, we have a region such as
figure 18 and by analyzing the gluing pattern in figure 18 originated from
figure 17, we obtain six possible face-pairing maps as follows;

R Q24 Q23 Q19 Q17 Qlﬁ Q15
EI'FI%FE':}(Qg Qs Q@ Qs Qo Qn)
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3—-1=7-1 1-6=7-5 8-1=4-1 2-6=4-5

3-2=5-2 1-1=7-4 8-2=6-2 2-1=4-4

3-3=5-3 1-2=5-5 8-3=6-3 2-2=6-5

3-4=1-4 1-3=5-4 8-4=2-4 2-3=6-4

3-5=1-5 5-1=7-2 8-5=2-5 6-1=4-2

3-6=7-6 5-6=7-3 8-6=4-6 6-6=4-3
A=A B=p

FIGURE 17. The glueing pattern of bottom faces

Q,

Q, F
Q
Qs Qil 7 Q9

Fl=F5 F2=F6, F3=FT7,
F4=F8, F9=F10, Fll=F12

FiGURE 18. The number of faces can be decreased to 12.
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Now we calculate all possible edge cycles to compute the relations.

€6 -

-1 —1
€1 €g € € €6
Q24Q23 — Q9Qs — Q28Q27 25 Q13Q12 2 Q5Q4 —» Q24Q23
€1 €6 €2 €4
Q23019 — QsQ7 — Q27Q26 — Q16Q10 — Q23CQ19
€1 €6 €2 €4
Q19Q17 —3 Q7Qs — Q26Q25 — Q10Q2 —> Q19Q17
€1 €3 €2
Q17Q16 — Q@12 — Q14Q27 -5 Q17Q16
€1 egl €6 ezl
Q16Q15 — Q12Q11 25 Q1Q3 — Q23Q22 25 Q16Q15
€2 €6 et el €6
Q24Q25 — Q1Q2 — Q20Q21 225 Q13Q14 25 QsQ6 —» Q24Q25
€2 54"1 €6 ezl
Q14Q15 = Q17Q18 23 Q2Q3 3 Q21Q22 25 Q14Q15
€5 61_1 €s
Q1Q18 = Qo1 15 Q24Q15 —5 Q1Q18
€5 €3t €4
Q18Q20 — Q11 Q28 2 Q3Q13 = Q18Q20

-1 -1
Q200 5, Q28Qo0 25 Q0Qc0 &3 ©1Qoo 6, 920Q00.

If we denote the generator which is determined by €; by z;, then we have the
following 10 relations from the above edge cycles;

xlmem{{lzglxg =id,
I1Te Lo Xy = ld,
Iy Tg T x4 = id,
z1 T3 T2 = id,

Tz mexy ! =id,
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o Tg le w;l zg = id,
zoxy mgxyt =id,
Zs xfl Ty = id,

T :53_1 x4 = id,

7351'6_11'5_11'6 =id.

Reduce zg by using the 2nd relation and we have,

-1,-1,,~1,-1_ -1 -1 -1 _ -
Ty Ty Ty Ty Xy Ty T, =id,
13T = ld,
zyzytay et ag gt = 1id,

-1 ,,-1 -1, ~1_-1_-1,-1 _:
Ty T, Ty Ty Ty T T, =id,
oz tzyt ey ey et = id,

Ty IEl_l Ty = id,
5 x;l x4 = id,
TsTerazi Ty eyt =id.

Reduce z5 by using the 6th relation and we have,

el ry oy tag ey e gt = id,
L1322 = ld,
T w3_1 a:l_l a;4_1 x2_1 a:4_1 = id,
zixyt ey ey eyt aT el =1id,

-1, -1,-1,-1 -
TaTy Ty Ty T, T4 =1id,
x;lzlmglm =id,
syt o ma g ozt ay ! =id.
Reduce z4 by using the 6th relation and we have,

etz ayt eyt ey ey ey ey eyt ayt = 1id,
L1 X3Tg = ld,
:t:l:L'3‘1xl_lasz_lmlm;lx;lm;lxlxgl =1id,

gtz mayt eyt eyt eyt ey ey ey e agt = 1id,

z;lzlzgmgxl_lxgmwl_lx;lxlz;lmz_l =id.

Reduce z3 by using the 2nd relation and we have,
.’112—11'115211713}1.%1.%22711‘2_1 :id,

'=id.

-1 -1,-1,-1 -1,.—1 —

Ty T1X2X] Ty Ty TaZp Ly Ly L1 L2 Ty Ly

Reduce z; z2 21 z5 ! s L1 zy by using the 1st relation and we have,
m;lwglml‘lxgmzq_lm;lxl_lxl_l =id.

Finally we have the following presentation of the fundamental group of M’

when we replace =] ! by 2 and z, by y. It consists of two generators and
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one relation of 9 words and it is easy to see from the presentation that the
abelianization of 7y (M) is the direct sum Z & Zs.

Theorem 4.1.

m(M') = (2, yley ' zyyey ™tz =id).

5. Generalization of face reducing procedure

In previous two sections, we reduce the number of the bottom faces of Ford
domain of figure-eight knot complement to 6 and that of the sibling to 8. In
this section, we will generalize the face reducing procedure.

Theorem 5.1. If the faces of a Ford domain which contains the ideal vertex
are glued by two parabolic elements and the number of edges which are identified
by glueing regular ideal tetrahedra is n then there exists a method which reduces
the number of bottom faces of the Ford domain less than or equal to 4n.

Proof. Since the number of edges which are identified by glueing tetrahedra
is n, we may obtain 2n vertices of the Ford domain at the height 1. Those
are the first collision points of horoballs but some vertices can be identified by
parabolic translations. (See figure 19)

Q 0O

FIGURE 19. Vertices at height 1

After glueing regular ideal tetrahedra, we will have a non compact manifold.
Hence the sum of angles around an edge of tetrahedra must be 27 and therefore
we observe that 12 small triangles of the bottom face of the Ford domain are
glued together around each vertex and they make a hexagon centered at each
vertex. For each hexagon, there exists another hexagon which is glued to the
corresponding hexagon by a face-pairing map of the Ford domain.

Because n hexagons are glued to another n hexagons and the 2n hexagons
fill up the whole bottom face of Ford domain by two parabolic translations, we
may reduce the number bottom faces of Ford domain to 2n. (See figure 20)

Note that the vertices on the bottom region which are also adjacent to the
vertex at infinity along a face with the vertex at infinity must be identified by
parabolic translations. But usually we may have a region which does not hold
that restriction as in figure 20. So we need to make some alterations by cutting
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FIGURE 20. A hexagon consists of 12 small triangles and the
corresponding hexagon.

FIGURE 21. Cut a hexagon by the intersection locus.

and pasting so that the bottom region of the Ford domain satisfies the given
restriction. Now we will describe a cutting and pasting alteration.

We call the two parabolic translation by «, 8 and 8 is the angle formed by
a and .

We will consider the parabolic translation « as the horizontal translation.
From the viewpoint at the point of infinity, the shape of the bottom region of
the Ford domain is a parallelogram with angle 8. We will call the lines which
extend the edges of parallelogram corresponding to a “horizontal lines” and
the extensions of another edges “vertical lines”. In fact “horizontal lines” and
“vertical lines” are not genuinely lines, but a set of piecewise geodesic lines,
But it looks like Euclidean lines from the viewpoint at the point of infinity.

Now we consider a hexagon which meets a vertical line of the Ford domain.
We will call the line segment formed by the intersection of a hexagon and a
vertical line the intersection locus. If there exists a hexagon which meets verti-
cal lines Cut the hexagon by the intersection locus as the upper right hexagon
in figure (see figure 21) and move the right hand side of the divided hexagon
into the region between the two vertical lines by the parabolic translation c.
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FIGURE 23. The bottom region which satisfies the restriction.
Notice the new “big vertices”

We have a corresponding intersection locus in another hexagon which is
glued to the given hexagon. (See figure 22)

Now we repeat this cutting and pasting procedure for all the remaining
hexagons which are cut by vertical lines. And eventually we may obtain a
region which satisfies the above restriction.

The largest possible number of reduced bottom faces can be made when all
hexagons are divided by two parts. So the number of reduced bottom faces is
less than or equal to 4n. For example when n = 2, the number of bottom face
is 8 for the sibling of figure-eight knot complement and the number of bottom
face is 6 for the figure-eight knot complement. O

Finally, we will describe a cutting and pasting alteration procedure to reduce
the number of faces on the bottom region of the Ford domain for the sibling of
figure-8 knot complement.

At first, we have the bottom region of the Ford domain with the shape of
parallelogram and the angle formed by two parabolic elements is . Since the
number of edges after glueing two tetrahedra is 2, there are 4 vertices at height
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B!

FI1GURE 24. Height 1 vertices and its hexagons in the bottom
of Ford domain of sibling of figure-8 knot complement

FI1GURE 25. Intersection loci of vertical line and hexagons and
the corresponding loci.

1. So we have 4 hexagonal faces for the bottom region of the Ford domain.
(See figure 24)

Since the region that consists of 4 hexagons does not satisfies the restric-
tion which says that the vertices adjacent to infinity are identified parabolic
translations, we need some cutting and pasting alterations.

First note that there are two hexagons which meet vertical lines, so we have
two loci and we can find corresponding loci in the other hexagons. (See figure
25)
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FIGURE 26. The bottom region of the Ford domain which
holds the restriction. Notice the new “big vertices”

Move the right hand side of the divided two hexagons which meet vertical
line into the region between the vertical lines by parabolic translations. Then
we obtain a bottom region of the Ford domain which satisfies the restriction.
(See figure 26)

)
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