기수산 Cyclopoid 요각류 Paracyclopina nana를 섭취한 넙치 Paralichthys olivaceus 자어의 핵산 함량과 소화효소적 반응

Digestive Enzymatic and Nucleic Acidic Responses of Olive Flounder Paralichthys oilivaceus Larvae Fed Cyclopoid Copepod Paracyclopina nana

  • 권오남 (북해도대학 대학원수산과학연구원) ;
  • 이균우 (한양대학교 화학과) ;
  • 김근업 (강원도수산자원연구소) ;
  • 박흠기 (강릉대학교 해양생명공학부)
  • Kwon, O-Nam (Graduate School of Fisheries Science, Hokkaido University) ;
  • Lee, Kyun-Woo (Department of Chemistry, Hanyang University) ;
  • Kim, Gun-Up (Gangwon Province Fisheries Resource Institute) ;
  • Park, Heum-Gi (Faculty of Marine Bioscience & Technology, Kangnung National University)
  • 발행 : 2008.08.25

초록

본 연구는 Paracyclopina nana의 먹이생물로써의 우수성을 핵산과 소화효소 활성을 기준으로 넙치 Paralichthys olivaceus 자어를 대상으로 밝히기 위한 것이었다. 실험은 P. nana 단독구(C 실험구), Artemia nauplii 단독구(A 실험구) 그리고 혼합구(M 실험구)로 나누어서 실시하였다. 넙치 자어의 체장은 부화 28일째, P. nana 단독 공급구에서 높게 나타났다. 건조중량당 핵산 함량은 C, M 실험구에서 A 실험구보다 함량이 빠르게 증가하였으며, RNA/DNA ratio는 C 실험구가 M, A 실험구보다 감소 경향이 빨랐다. 이들 자어의 생존률은 실험구에 따른 차이는 없었지만, 비색소침착률은 C, M 실험구에서 낮게 나타났으며, 실험 종료 시 변태율은 C 실험구에서 가장 높게 나타났고, A 실험구에서 유의적으로 가장 낮게 나타났다. $\alpha$-amylase 활성은 모든 실험구에서 증가하는 활성의 경향을 보였다. TAP 활성은 A 실험구에서 26일째 이후 9 mU/larva의 활성으로 높게 나타났으나, 다른 실험구에서는 $5{\sim}6$ mU/larva로 증가하지 않았다. $TAP/{\alpha}-amylase$ 활성의 비에서 A 실험구는 실험기간 동안 유의적으로 변화가 없었으나, C, M 실험구는 유의적으로 낮아지는 경향을 보였다. 결과적으로 실험구들의 성장, 핵산 함량의 변태와 관련된 시기적 증감 현상, 그리고 C, M 실험구에서 지속적으로 낮아지는 $TAP/{\alpha}-amylase$ 활성비를 보았을 때, 넙치 자어의 가장 높은 성장률을 볼 수 있었던 요각류인 P. nana를 공급하는 것이 이 시기의 효과적인 사육 방법인 것으로 판단된다.

We investigated the changes in growth, digestive enzymes activities, nucleic acids contents and RNA/DNA ratio of flounder Paralichthys olivaceus larvae (C for Paracyclopina nana, A for Artemia, and M for Mix of C and A) for 14 to 28 DAH. Body length of flounder larvae showed the best in the C trial at 28 DAH. The change of nucleic acids contents showed faster in C and M trials than A trial. And RNA/DNA ratio showed the significantly faster changes in C trial than A trial. High metamorphosis rates were also observed in C and M trial. $\alpha$-amylase activities increased gradually up to 28 DAH in all trials. Total alkaline protease (TAP) activities of A trial showed the highest value to 9 mU/larvae at 26 DAH. But others trials showed lower to $5{\sim}6$ mU/larva than A trial. TAP:$\alpha$-amylase activity ratio did not significantly changed to $0.025{\sim}0.053$ in A trial during the experiments. But, C and M trials tended to gradually decrease from $0.078{\sim}0.083$ (initial) to $0.013{\sim}0.018$ (final). Therefore, it shown the ratio gradually decreased of TAP:$\alpha$-amylase activity, stability of TAP activity, and rapid change of nucleic acids in trials grown positively. Thus, because P. nana could continuously supply the optimal nutrients for flounder larvae, we suggested the supplement of the copepod to an efficient feed of the flounder larvae.

키워드

참고문헌

  1. Alarcon, M. Diz, F.J. Moyano and E. Abellan, 1998. Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Phsiol. Biochem., 19, 257-267 https://doi.org/10.1023/A:1007717708491
  2. Aragao, C, L.E.C. Conseicao, M.T. Dinis and H. Fyhn, 2004. Amino acids pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture, 234, 429-445 https://doi.org/10.1016/j.aquaculture.2004.01.025
  3. Benitez, L.V. and L.B. Tiro, 1982. Studies on the digestive proteases of the milkfish Chanos chanos. Mar. Biol., 71, 309-315 https://doi.org/10.1007/BF00397047
  4. Buckley, L.J., 1979. Relationships between RNA-DNA ratios, pre density, and growth rate in Atlantic cod (Gadus morhua) larvae. J. Fish. Res. Bd. Can., 36, 1497-1502 https://doi.org/10.1139/f79-217
  5. Duncan, D.B., 1955. Multiple-range and multiple F tests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  6. Estevez, A., L.A. McEvoy, J.G. Bell and J.R. Sargent, 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture, 180, 321-343 https://doi.org/10.1016/S0044-8486(99)00209-4
  7. Fukuda, M., H. Sako, T. Shigeta and R. Shibata, 2001. Relationship between growth and biochemical indices in laboratoryreared juvenile Japanese flounder (Paralichthys olivaceus), and its application to wild fish. Mar. Biol., 138, 47-55 https://doi.org/10.1007/s002270000431
  8. Fukuda, M., Y. Yano, H. Nakano and M. Sugiyama, 1986. Protein and nucleic acid changes during early developmental stages of Cresthead flounder. Bull. Jap. Soc. Sci. Fish., 52, 951-955 https://doi.org/10.2331/suisan.52.951
  9. Gwak, W.-S. and M. Tanaka, 2002. Changes in RNA, DNA and protein contents of laboratory-reared Japanese flounder Paralichthys olivaseus during metamorphosis and settlement. Fish. Sci., 68, 27-33 https://doi.org/10.1046/j.1444-2906.2002.00385.x
  10. Hidalgo, M.C., E. Urea and A. Sanz, 1999. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170, 267-283 https://doi.org/10.1016/S0044-8486(98)00413-X
  11. Kimura, R., Y. Watanabe and H. Zenitani, 2000. Nutritional condition of first-feeding larvae of Japnaese sardine in the coastal and oceanic water along the Kuroshio Current. J. Mar. Sci., 57, 240-248
  12. Kraul, S., K. Brittain, R. Cantress, T. Nagao, H. Ako, A. Ogasawara and H. Kitagawa, 1993. Nutritional factors affecting stress resistance in the larval mahimahi Coryphaena hippurus. J. World Aqucult. Soc., 24, 186-193 https://doi.org/10.1111/j.1749-7345.1993.tb00007.x
  13. Kunitz, M., 1947. Crystalline soybean trypsin inhibitor II. General properties. J. Gen. Physiol., 30, 291-310 https://doi.org/10.1085/jgp.30.4.291
  14. Lee, K.W., 2004. Mass culture and food value of the cyclopoid copepod Paracyclopina nana Smirnov. Ph.D. thesis, Kangnung National University, Gangneung, Korea, 125 pp
  15. Martinez, I, F.J. Moyano, C. Fernandez-Diaz and M. Yufera, 1999. Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiol. Biochem., 21, 317-323 https://doi.org/10.1023/A:1007802708459
  16. McEvoy, L.A., T. Naess, J.G. Bell and O. Lie, 1998. Lipid and fatty acid composition of normal and malpigmented Atlantic halibut (Hippoglossus hippoglossus) fed enriched Artemia: a comparison with fry fed wild copepods. Aquaculture, 163, 237-250 https://doi.org/10.1016/S0044-8486(98)00237-3
  17. Nakano, H. and S. Shirahata, 1988. An Evaluation of the physiological quality of hatchery reared Chum salmon fry, Oncorhynchus keta. Nippon Suisann Gakkaishi, 54, 1264-1269
  18. Oganesian, A., M. Poot, G. Daum, S.A. Coats, M.B. Wright, R.A. Seifert, and D.F. Bowen-Pope, 2003. Protein tyrosine phosphatase RQ is a phosphatidylinositol phosphatase that can regulate cell survival and proliferation. Proc. Natl. Acad. Sci. U.S.A. 100, 7563-7568
  19. Park, H.G., S.B. Hur and C.W. Kim, 1998. Culturing Method and Dietary Value of Benthic Copepod, Tigriopus japonicus. J. Aquacult., 11, 261-269. (in Korean)
  20. Payne, M.F., R.J. Rippingale and J.J. Cleary, 2001. Cultured copepods as food for West Australian dhufish (Glaucosoma hebraicum) and pink snapper (Pagrus auratus) larvae. Aquaculture, 194, 137-150 https://doi.org/10.1016/S0044-8486(00)00513-5
  21. Rainuzzo. J., K.I. Reitan and Y. Olsen, 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture, 155, 103-115 https://doi.org/10.1016/S0044-8486(97)00121-X
  22. Somogyi, M., 1952. Notes on sugar determination. J. Bio. Chem., 195, 19-23
  23. Stottrup, J,G. and N.H. Norsker, 1997. Production and use of copepods in marine fish larviculture. Aquaculture, 155, 231-247 https://doi.org/10.1016/S0044-8486(97)00120-8
  24. Su H.M., M.S. Su and I. C. Liao, 1997. Collection and culture of live foods for aquaculture in Taiwan. Hydrobiologia, 358, 37-40 https://doi.org/10.1023/A:1003107701367
  25. Toledo, J.D., M.S. Golez, M. Doi and A. Ohno, 1999. Use of copepod nauplii During early feeding stage of grouper Epinephelus coioides. Fish. Sci., 65, 390-397 https://doi.org/10.2331/fishsci.65.390
  26. Zambonino Infante, J.L., C.L. Cahu, A. Peres, P. Quazuguel and M.M. Le Gall, 1996. Sea bass (Dicentrarchus labrax) larvae fed different Artemia rations: growth, pancreas enzymatic response and development of digestive functions. Aquaculture, 139, 129-138 https://doi.org/10.1016/0044-8486(95)01149-8