DOI QR코드

DOI QR Code

Controlled Growth of Multi-walled Carbon Nanotubes Using Arrays of Ni Nanoparticles

Ni 나노입자의 배열을 이용한 다중벽 탄소나노튜브의 제어된 성장

  • Ji, Seung-Muk (Department of Physics, Kangwon National University) ;
  • Lee, Tae-Jin (Department of Physics, Kangwon National University) ;
  • Bahng, Jae-Ho (Korea Research Institute of Standards and Science) ;
  • Hong, Young-Kyu (Korea Research Institute of Standards and Science) ;
  • Kim, Han-Chul (Korea Research Institute of Standards and Science) ;
  • Ha, Dong-Han (Korea Research Institute of Standards and Science) ;
  • Kim, Chang-Soo (Korea Research Institute of Standards and Science) ;
  • Koo, Ja-Yong (Korea Research Institute of Standards and Science)
  • Published : 2008.09.30

Abstract

We have investigated the optimal growth conditions of carbon nanotubes (CNTs) using the chemical vapor deposition and the Ni nanoparticle arrays. The diameter of the CNT is shown to be controlled down to below 20 nm by changing the size of Ni particle. The position and size of Ni particles are controlled continuously by using wafer-scale compatible methods such as lithography, ion-milling, and chemical etching. Using optimal growth conditions of temperature, carbon feedstock, and carrier gases, we have demonstrated that an individual CNT can be grown from each Ni nanoparticle with almost 100% probability over wide area of $SiO_2/Si$ wafer. The position, diameter, and wall thickness of the CNT are shown to be controlled by adjusting the growth conditions.

화학기상증착법과 Ni 나노입자 배열을 이용한 탄소나노튜브의 최적 성장 조건을 연구했다. Ni 입자의 크기를 변화시키는 방법으로 탄소나노튜브의 직경을 20 nm 이하까지 제어할 수 있었다. 개별 Ni 입자의 크기와 위치는 기존의 식각법 등을 이용하여 웨이퍼 수준의 대면적에서 연속적으로 제어가 가능하였다. 성장온도, 탄소원, 희석가스 등의 비율을 최적화 함으로써 $SiO_2/Si$ 웨이퍼의 넓은 면적에서 각 Ni 입자로부터 단 한 개씩의 탄소나노튜브가 100% 확률로 성장 가능하다는 것을 보였다. 탄소나노튜브의 위치, 직경, 벽두께 등의 특성들은 성장조건을 조정하여 제어가능하다는 것을 보였다.

Keywords

References

  1. S. Iijima, Nature (London) 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, and R.E. Smalley, Science 275, 1922 (1997) https://doi.org/10.1126/science.275.5308.1922
  3. J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, Nature 391, 59 (1998) https://doi.org/10.1038/34139
  4. T.W. Odom, J.-L. Huang, P. Kim, and C.M. Lieber, Nature 391, 62 (1998) https://doi.org/10.1038/34145
  5. S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998) https://doi.org/10.1038/29954
  6. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, and C.M. Lieber, Science 289, 94 (2000) https://doi.org/10.1126/science.289.5476.94
  7. H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Science 293, 76 (2001) https://doi.org/10.1126/science.1061797
  8. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Nano Lett. 1, 453 (2001) https://doi.org/10.1021/nl015606f
  9. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001) https://doi.org/10.1126/science.1065824
  10. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. Mcintyre, P. Mceuen, M. Lundstrom, and H. Dai, Nature Mater. 1, 241 (2002) https://doi.org/10.1038/nmat769
  11. J. Liu, M.J. Casavant, M. Cox, D.A. Wlaters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert, and R.E. Smalley, Chem. Phys. Lett. 303, 125 (1999) https://doi.org/10.1016/S0009-2614(99)00209-2
  12. J.C. Lewenstein, T.P. Burgin, A. Ribayrol, L.A. Nagahara, and R.K. Tsui, Nano Lett. 2, 443 (2002) https://doi.org/10.1021/nl015690z
  13. S.G. Rao, L. Huang, W. Setyawan, and S. Hong, Nature 425, 36 (2003) https://doi.org/10.1038/425036a
  14. L.A. Nagahara, I. Amlani, J. Lewenstein, and R.K. Tsui, Appl. Phys. Lett. 80, 3826 (2002) https://doi.org/10.1063/1.1481237
  15. R. Krupke, F. Hennrich, H.B. Weber, M.M. Kappes, and H.V. Lohneysen, Nano Lett. 3, 1019 (2003) https://doi.org/10.1021/nl0342343
  16. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, and H. Dai, Appl. Phys. Lett. 79, 3155 (2001) https://doi.org/10.1063/1.1415412
  17. E. Joselevich and C.M. Lieber, Nano Lett. 2, 1137 (2002) https://doi.org/10.1021/nl025642u
  18. Y.-T. Jang, J.-H. Ahn, B.-K. Ju, and Y.-H. Lee, Solid State Commun. 126, 305 (2003) https://doi.org/10.1016/S0038-1098(03)00164-9
  19. Y. Li, J. Liu, Y. Wang, and Z.L. Wang, Chem. Mater. 13, 1008 (2001) https://doi.org/10.1021/cm000787s
  20. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, J. Phys. Chem. B 105, 11424 (2001) https://doi.org/10.1021/jp012085b
  21. C.L. Cheung, A. Kurtz, H. Park, and C.M. Lieber, J. Phys. Chem. B 106, 2429 (2002) https://doi.org/10.1021/jp0142278
  22. S.N. Zaretskiy, Y.-K. Hong, D.H. Ha, J.-H. Yoon, J. Cheon, and J.-Y. Koo, Chem. Phys. Lett. 372, 300 (2003) https://doi.org/10.1016/S0009-2614(03)00405-6
  23. Y.-K. Hong, J.H. Bahng, G. Lee, H. Kim, W. Kim, S. Lee, J.-Y. Koo, J.-I. Park, W. Lee, and J. Cheon, Chem. Comm., 3034 (2003)
  24. V. Semet, V.T. Binh, P. Vincent, D. Guillot, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, P. Legagneux, and D. Pribat, Appl. Phys. Lett. 81, 343 (2002) https://doi.org/10.1063/1.1489084
  25. Q. Ye, A.M. Cassell, H. Liu, K.-J. Chao, J. Han, and M. Meyyappan, Nano Lett. 4, 1301 (2004) https://doi.org/10.1021/nl049341r
  26. A. Javey and H. Dai, J. Am. Chem. Soc. 127, 11942 (2005) https://doi.org/10.1021/ja0536668
  27. The crystallinity almost disappears from the nanoparticles formed in Ar only atmosphere due to oxidation. It was reported that the growth probability of CNTs from pure Co nanoparticles was higher than that from oxidized Co nanoparticles [22]
  28. B.C. Park, K.Y. Jung, W.Y. Song, B. O, and S.J. Ahn, Adv. Mater. 18, 95 (2006) https://doi.org/10.1002/adma.200501223
  29. P.G. Collins, M.S. Arnold, and P. Avouris, Science 292, 706 (2001) https://doi.org/10.1126/science.1058782
  30. J.Y. Huang, S. Chen, S.H. Jo, Z. Wang, D.X. Han, G. Chen, M.S. Dresselhaus, and Z.F. Ren, Phys. Rev. Lett. 94, 236802 (2005) https://doi.org/10.1103/PhysRevLett.94.236802