DEVELOPMENT OF ALLOTRANSPLANTED TOOTH GERMS AT VARIOUS DEVELOPMENTAL STAGE INTO THE WHITE RAT'S EXTRACTION SOCKET

흰쥐의 발치와에 이식한 단계별 치아싹의 발육 과정

  • Jung, Hwi-Hoon (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Jung, Han-Sung (Department of Oral Biology, College of Dentistry and Oral Science Research Center, Yonsei University) ;
  • Kim, Seoung-Oh (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Choi, Hyung-Jun (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Jae-Ho (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Choi, Byung-Jai (Department of Pediatric Dentistry, College of Dentistry, Yonsei University)
  • 정회훈 (연세대학교 치과대학 소아치과학교실) ;
  • 정한성 (연세대학교 치과대학 구강생물학교실, 구강과학연구소) ;
  • 김성오 (연세대학교 치과대학 소아치과학교실) ;
  • 최형준 (연세대학교 치과대학 소아치과학교실) ;
  • 이제호 (연세대학교 치과대학 소아치과학교실) ;
  • 최병재 (연세대학교 치과대학 소아치과학교실)
  • Published : 2008.05.30

Abstract

The purpose of this study is to evaluate at which stage of tooth germ would develop into normal calcification and hence to increase the success rate of transplantation. Therefore, tooth germs on the 15th, 17th embryonic day and the 3rd day of birth were separated for allotransplantation into maxilla of adult rat of 11 weeks. Calcification processes were analyzed radiographically and histopathologically at 4 weeks and 8 weeks after allotransplantation. The results are as follows: 1. Allotransplanted tooth germ at 4 weeks and 8 weeks showed delayed calcification compared to that of normal odontogenesis. 2. At 4 weeks, abnormal calcified tissue, such as odontoma and ankylosis of osteodentin with surrounding alveolar bone were observed. 3. At 8 weeks, allotransplanted tooth germs of the 15th and 17th embryonic day showed calcification and osteodentin surrounded by periodontal ligament. 4. At 8 weeks, allotransplanted tooth germs of the 3rd day of birth showed calcification composed of cementum and osteodentin. In this study, we observed small sized and amorphous calcified tissue from allotropic allotransplantation of tooth germs. Since these calcified tissue were underdeveloped and shaped irregularly, for calcification into normal tooth form, further study needs consideration about the reduction of surgical trauma, developmental stage of transplanted tooth germ, blood supply from recipient site, fixation method in transplanted site and period of transplantation.

외상이나 치주 질환, 유전적 결함 등에 의하여 치아가 상실되었을 경우, 보철 수복이나 임플란트로 치료하고 있다. 그러나 보철 수복이나 임플란트는 자연치가 아닌 인공치를 이용한 치료로서 기능성과 심미성 등에서 자연치에 비하여 한계가 있으므로 자연치를 이용한 이식 방법에 관심이 증가하고 있으며 치아 이식의 성공률을 높이기 위한 이식 치아의 발육과 성장에 대한 연구가 진행 중이다. 이 연구는 세 가지 단계의 치아싹을 발치와에 동종 이식하고 치아싹이 발육하여 석회화가 이루어지는지 평가하기 위하여 임신 15일과 17일, 출생 후 3일 된 흰쥐의 치아싹을 분리하여 11주 된 흰쥐의 발치와에 이식하고 4주와 8주 후 방사선학적 그리고 병리조직학적으로 석회화 과정을 관찰하여 다음과 같은 결과를 얻었다. 1. 발치와에 이식된 임신 15일과 17일, 출생 후 3일 된 치아싹에서 4주와 8주 후 석회화된 조직이 형성되었다. 2. 임신 15일과 17일, 출생 후 3일 된 치아싹을 발치와에 이식하고 4주 후 치아종 같은 비정상적인 석회화 조직과 인접 치조골과 유착된 골양상아질이 관찰되었다. 3. 임신 15일과 17일 된 치아싹을 발치와에 이식하고 8주 후 골양상아질이 보였으며 치주인대로 둘러싸인 것도 관찰되었다. 4. 출생 후 3일 된 치아싹을 발치와에 이식하고 8주 후 골양상아질과 백악질이 형성되었다. 이 연구는 치아싹을 흰쥐의 발치와에 이식한 후 치아싹의 발육을 관찰한 것으로 이식 조직에서 크기가 작고 무정형의 석회화 조직이 형성되었다. 정상적인 치아보다 형태가 불규칙하고 발육이 늦었으므로 이식된 치아싹이 정상적인 치아 형태로 석회화되도록 하기 위해서는 이식 조직의 발육 정도와 이식 조직을 절제할 때 외과적 손상의 감소, 치아싹으로의 풍부한 혈류 공급, 이식 기간, 이식 조직의 고정을 고려하여 더 많은 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Kerr D : Oral pathology, The replantation and transplantation of teeth. Lea and Febiger, Washington D. C., 397-419, 1986.
  2. Isizeki K, Fujiwara N, Sakakura Y, et al. : The development of mandibular molar tooth germs isografted in the mouse spleen. Arch Oral Biol, 32:695-704, 1987. https://doi.org/10.1016/0003-9969(87)90112-9
  3. Palmer RM, Lumsden AG : Development of periodontal ligament and alveolar bone in homografted recombinations of enamel organs and papillary, pulpal and follicular mesenchyme in the mouse. Arch Oral Biol. 32:281-289, 1987. https://doi.org/10.1016/0003-9969(87)90022-7
  4. Lubbock MJ, Harrison VT, Lumsden AG, et al. : Development and cell fate in interspecific (Mus musculus/ Mus caroli) intraocular transplants of mouse molar tooth-germ tissues detected by in situ hybridization. Arch Oral Biol. 41:77-84, 1996. https://doi.org/10.1016/0003-9969(95)00094-1
  5. Baba T, Terashima T, Oida S, et al. : Determination of enamel protein synthesized by recombined mouse molar tooth germs in organ culture. Arch Oral Biol, 41:215-219, 1996. https://doi.org/10.1016/0003-9969(95)00120-4
  6. Fleming HS : Homologous and heterologous intraocular growth of transplanted tooth germs. J Dent Res, 31:166-188, 1952. https://doi.org/10.1177/00220345520310020301
  7. Couble ML, Melin M, Joffre-Romeas, et al. : Effects of TGF beta1 on dental pulp cells in cultured human tooth slices. J Dent Res, 79:1689-1699, 2000. https://doi.org/10.1177/00220345000790090901
  8. About I, Murray PE, Lumley PJ, et al. : Human odontoblast cell numbers after dental injury. J Dent, 28:277-285, 2000. https://doi.org/10.1016/S0300-5712(99)00078-0
  9. Yamashita Y, Yoneda S, Shibata S, et al. : Biosynthesis of versican by rat dental pulp cells in culture. Arch Oral Biol, 47:435-442, 2002. https://doi.org/10.1016/S0003-9969(02)00029-8
  10. Miura M, Batouli S, Brahim J, et al. : Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res, 82:976-98, 2003. https://doi.org/10.1177/154405910308201208
  11. Riviere GR, Tarbox GS, Bringas P, et al. : Murine tooth organ transplantation after in vitro culture. J Dent Res, 62:980-984, 1983. https://doi.org/10.1177/00220345830620091301
  12. Vries IG, Ameloot PC, Coomans D, et al. : An ultrastructural study of dentinogenesis and amelogenesis in rat molar tooth germs culutred in vitro. Cell Tissue Res, 246: 623-634, 1986. https://doi.org/10.1007/BF00215204
  13. Prime SS, Reade PC : Xenografts of recombined bovine odontogenic tissues and cultured cells to hypothymic mice. Transplantation 30:149-152, 1980. https://doi.org/10.1097/00007890-198008000-00014
  14. Gaunt WA : Quantitative aspects of the developing tooth germ. J Dent Res, 46:851-857, 1967. https://doi.org/10.1177/00220345670460053901
  15. Pinzon RD, Kozlov M, Burch WP : Histology of rat molar pulp at different ages. J Dent Res, 46:202- 208, 1965.
  16. Gerber A, Armbrecht E : Integration of dental technology into the structure of stomatology. Comments on the articles by Ebersback, Kamfe, Stiebing and Ulrich Zahntechnik, 13:511-513, 1972.
  17. Weinreb MM, Sharav Y, Ickowicz M : The recuperative capacity of the pulp. Int Dent, 17:393-404, 1967.
  18. Barrett AP, Read, PC : Revascularization of mouse tooth isografts and allografts using autoradiography and carbon-perfusion. Arch Oral Biol, 26:541-545, 1981. https://doi.org/10.1016/0003-9969(81)90015-7
  19. Klein J : Tooth transplantation in the mouse. III. The role of minor (non-H-2) histocompatibility loci in tooth germ transplantation. Transplantation, 12:500-508, 1971. https://doi.org/10.1097/00007890-197112000-00015
  20. Riviere GR : Skin graft rejection after allogenic tooth transplants in mice. J Dent Res, 63:41-43, 1984. https://doi.org/10.1177/00220345840630010901
  21. Lumsden AG, Buchanan JA : An experimental study of timing and topography of early tooth development in the mouse embryo with an analysis of the role of innervation. Arch Oral Biol, 31:301-311, 1986. https://doi.org/10.1016/0003-9969(86)90044-0
  22. Kollar E J, Baird GR : Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morph. 24:173-186, 1970.
  23. Yoshikawa DK, Kollar EJ : Recombination experiments on the odontogenic roles of mouse dental papilla and dental sac tissues in ocular grafts. Arch Oral Biol, 26:303-307, 1981. https://doi.org/10.1016/0003-9969(81)90051-0
  24. Granholm AC : Histology: Innervation and radiographic appearance of fetal rat tooth germs developing in oculo. Scand J Dent Res, 92:381-390, 1984.
  25. Richman JM, Kollar EJ : Tooth indication and temporal patterning epithelium of fetal mice. Am J Anat, 175:493-505, 1986. https://doi.org/10.1002/aja.1001750408
  26. Bartlett PF, Reade PC : The antigenicity of mouse tooth germs. I. Isogenic and allogenic transplantation. Transplantation, 16:479-488, 1973. https://doi.org/10.1097/00007890-197311000-00013
  27. Prime SS, Reade PC : The separation and culture of cell populations from bovine molar tooth germs. Arch Oral Biol, 25:187-193, 1980. https://doi.org/10.1016/0003-9969(80)90019-9
  28. Morio I : Recombinant study of the mouse molar cervical loop and dental papilla by renal transplantation. Arch Oral Biol, 30:557-561, 1985. https://doi.org/10.1016/0003-9969(85)90057-3
  29. Riviere GR, Sabet TY, Hoffman RL : Transplantation of tooth buds across a multiple non-H-2 barrier. Transplantation, 12:271-278, 1971. https://doi.org/10.1097/00007890-197110000-00006
  30. Carlile MJ, Harrison VT, Lumsden AGS et al. : Development and cell fate in interspecific (Mus musculus/ Mus caroli) orthotropic transplants of mouse molar tooth germs detected by in situ hybridization. Arch Oral Biol, 43:395-406, 1998. https://doi.org/10.1016/S0003-9969(97)00118-0
  31. Kollar EJ, Fisher C : Tooth induction in chick epithelium: Expression of quiescent gene for enamel synthesis. Science, 207:993-995, 1980. https://doi.org/10.1126/science.7352302
  32. Thesleff I, Mikkola M : The role of growth factors in tooth development. Int Rev Cytol, 217:93-135, 2002. https://doi.org/10.1016/S0074-7696(02)17013-6
  33. Thesleff I, Sharpe P : Signalling networks regulating dental development. Mech Dev, 67:111-123, 1997. https://doi.org/10.1016/S0925-4773(97)00115-9
  34. Kollar EJ, Lumsden AG : Tooth morphogenesis: the role of the innervation during induction and pattern formation. J Biol Buccale, 7:49-60, 1979.
  35. Nanci A, Bosshardt DD : Immunocytochemical characterization of ectopic enamel deposits and cementicles in human teeth. Eur J Oral Sci, 111:51-59, 2003. https://doi.org/10.1034/j.1600-0722.2003.00015.x
  36. Hoffman RL : Formation of periodontal tissues around subcutaneously transplanted hamster molars. J Dent Res, 39:781-798, 1960. https://doi.org/10.1177/00220345600390040501
  37. Avery JK, Gregg JM : Experimental studies of vascular development in normal and cleft palate mouse embryos. Cleft Palate J, 8:101-117, 1971.
  38. Baume LJ, Becks H, Evans HM : Hormonal control of tooth eruption. I. The effect of thyroidectomy of the upper rat incisor and the response to growth hormone, thyroxin, or the combination of both. J Dent Res, 33:80-90, 1954. https://doi.org/10.1177/00220345540330011601
  39. Schour I, Bhaskar SN, Greep RO, et al. : The corrective effect of parathyroid hormone on genetic anomalies in the dentition and the tibia of the rat. J Dent Res, 31:256-270, 1952.
  40. Ten Cate AR, Mills C : The development of the periodontium: the origin of alveolar bone. Anat Rec, 173:69-78, 1972. https://doi.org/10.1002/ar.1091730106
  41. Cserepfalvi MP : Transplantation of teeth in humans. Williams and Wilkins, Baltimore, 259-260, 1959.
  42. 장석철, 정한성, 이제호, 김성오, 최병재 : 흰쥐의 발치와에 이식된 태아 치아싹의 발육. 대한소아치과학회지, 33:35- 42, 2006.
  43. 고동현 : 흰쥐의 악골에 동종 이식된 태아 치아싹의 장기간 발육, 연세대학교 대학원, 2004.