EFFECTS OF COLLAGENASE AND ESTERASE ON DENTIN BOND STRENGTH AND NANOLEAKAGE

Collagenase와 esterase가 상아질 접착강도와 nanoleakage에 미치는 영향

  • Jung, Young-Jung (Department of Pediatric Dentistry, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Hahn, Se-Hyun (Department of Pediatric Dentistry, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kim, Chong-Chul (Department of Pediatric Dentistry, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Lee, Sang-Hoon (Department of Pediatric Dentistry, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kim, Jung-Wook (Department of Pediatric Dentistry, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kim, Young-Jae (Department of Pediatric Dentistry, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Jang, Ki-Taeg (Department of Pediatric Dentistry, School of Dentistry and Dental Research Institute, Seoul National University)
  • 정영정 (서울대학교 치과대학 소아치과학교실 및 치학연구소) ;
  • 한세현 (서울대학교 치과대학 소아치과학교실 및 치학연구소) ;
  • 김종철 (서울대학교 치과대학 소아치과학교실 및 치학연구소) ;
  • 이상훈 (서울대학교 치과대학 소아치과학교실 및 치학연구소) ;
  • 김정욱 (서울대학교 치과대학 소아치과학교실 및 치학연구소) ;
  • 김영재 (서울대학교 치과대학 소아치과학교실 및 치학연구소) ;
  • 장기택 (서울대학교 치과대학 소아치과학교실 및 치학연구소)
  • Published : 2008.08.29

Abstract

The purpose of this study was to evaluate the effects of collagenase and esterase on dentin bond strength and nanoleakage. Resin composites were bonded to occlusal dentin of premolars with Single Bond 2(SB) and Clearfil SE Bond(SE). After the microtensile specimens were prepared and stored in PBS for 24 hours(I) or, PBS(II), collagenase(III), esterase(IV) solution for 4 weeks, the specimens were stained with silver nitrate solution. Microtensile bond strength(${\mu}TBS$) and silver penetration area were measured and, the results were as follows: 1. For group II, III, and IV, the bond strengths of SB were lower than those of SB(p<0.05). The bond strengths of SB II, III, and IV were lower than that of SB I(p<0.05). There was no difference among the bond strengths of SE $I{\sim}IV$ groups(p>0.05). 2. Silver penetration areas of SB were higher than those of SE for all storage groups(p<0.05). In SB and SE groups, there was no significant difference of silver penetration area among $I{\sim}IV$ groups(p>0.05). 3. SE I, II, and III showed inverse relationship between the bond strengths and the silver penetration areas(p<0.05).

본 연구는 상아질 접착계면에서 collagenase와 esterase가 접착강도와 극미세누출에 미치는 영향을 살펴보기 위해 시행하였다. 발치된 치아의 교합면 상아질에 Single Bond 2(SB)와 Clearfil SE bond(SE)를 사용하여 상아질-레진 접착시편을 제작하고, 시편을 인산완충용액(PBS)에 24시간(I), 또는 PBS(II), collagenase 용액(III), esterase 용액(IV)에 4주간 보관 한 후 질산은 용액으로 염색하였다. 시편의 미세인장접착강도(${\mu}TBS$)와 질산은 침투 면적을 측정하여 다음과 같은 결과를 얻었다. 1. SB군의 접착강도가 $II{\sim}IV$군에서 SE군에 비해 낮은 값을 나타내었다(p<0.05). SB군은 $II{\sim}IV$군의 접착강도가 I군에 비해 낮은 값을 보였으나(p<0.05), SE군의 접착강도는 $I{\sim}IV$군간에 차이를 보이지 않았다(p>0.05). 2. SB군의 질산은 침투 면적이 SE군에 비해 높았으며(p<0.05), SB군과 SE군에서 질산은 침투 면적은 $I{\sim}IV$군간에 차이를 보이지 않았다(p>0.05). 3. 접착강도와 질산은 침투 면적은 SE군의 I, II, III군에서 음의 상관관계를 보였다(p<0.05).

Keywords

References

  1. Sano H, Shono T, Takatsu T, et al. : Microporous dentin zone beneath resin-impregnated layer. Oper Dent, 19:59-64, 1994.
  2. Sano H, Takatsu T, Ciucchi B, et al. : Nanoleakage: leakage within the hybrid layer. Oper Dent, 20:18-25, 1995.
  3. Van Meerbeek B, Yoshida Y, Lambrechts P, et al. : A TEM study of two water-based adhesive systems bonded to dry and wet dentin. J Dent Res, 77:50-59, 1998. https://doi.org/10.1177/00220345980770010501
  4. Li H, Burrow MF, Tyas MJ : Nanoleakage patterns of four dentin bonding systems. Dent Mater, 16:48-56, 2000. https://doi.org/10.1016/S0109-5641(99)00085-8
  5. Okuda M, Pereira PN, Nakajima M, et al. : Relationship between nanoleakage and long-term durability of dentin bonds. Oper Dent, 26:482-490, 2001.
  6. Guzman-Armstrong S, Armstrong SR, Qian F : Relationship between nanoleakage and microtensile bond strength at the resin-dentin interface. Oper Dent, 28:60-66, 2003.
  7. Hayet M : Positive staining for electron microscopy. Nostrand Reinhold Co.,New York, 1975.
  8. Pioch T, Staehle HJ, Duschner H, et al. : Nanoleakage at the composite-dentin interface: a review. Am J Dent, 14:252-258, 2001.
  9. Gwinnett AJ, Tay FR, Pang KM, et al. : Quantitative contribution of the collagen network in dentin hybridization. Am J Dent, 9:140-144, 1996.
  10. Sano H, Yoshikawa T, Pereira PN, et al. : Longterm durability of dentin bonds made with a selfetching primer, in vivo. J Dent Res, 78:906-911, 1999. https://doi.org/10.1177/00220345990780041101
  11. Spencer P, Swafford JR : Unprotected protein at the dentin-adhesive interface. Quintessence Int, 30:501-507, 1999.
  12. Jaffer F, Finer Y, Santerre JP : Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials, 23:1707-1719, 2002. https://doi.org/10.1016/S0142-9612(01)00298-8
  13. Finer Y, Santerre JP : Biodegradation of a dental composite by esterases: dependence on enzyme concentration and specificity. J Biomater Sci Polym Ed, 14:837-849, 2003. https://doi.org/10.1163/156856203768366558
  14. Smith RE, Burmaster S, Glaros AG, et al. : Aromatic dental monomers affect the activity of cholesterol esterase. Biochim Biophys Acta, 1550:100-106, 2001. https://doi.org/10.1016/S0167-4838(01)00275-8
  15. Hebling J, Pashley DH, Tjaderhane L, et al. : Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res, 84:741-746, 2005. https://doi.org/10.1177/154405910508400811
  16. Uitto VJ, Suomalainen K, Sorsa T : Salivary collagenase. Origin, characteristics and relationship to periodontal health. J Periodontal Res, 25:135-142, 1990. https://doi.org/10.1111/j.1600-0765.1990.tb01035.x
  17. Pashley DH, Tay FR, Yiu C, et al. : Collagen degradation by host-derived enzymes during aging. J Dent Res, 83:216-221, 2004. https://doi.org/10.1177/154405910408300306
  18. Jackson RJ, Lim DV, Dao ML : Identification and analysis of a collagenolytic activity in Streptococcus mutans. Curr Microbiol, 34:49-54, 1997. https://doi.org/10.1007/s002849900143
  19. Zhou D, Lee HS, Villarreal F, et al. : Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res, 23:949-957, 2005. https://doi.org/10.1016/j.orthres.2005.01.022
  20. Collins JM, Ramamoorthy K, Da Silveira A, et al. : Expression of matrix metalloproteinase genes in the rat intramembranous bone during postnatal growth and upon mechanical stresses. J Biomech, 38:485-492, 2005. https://doi.org/10.1016/j.jbiomech.2004.04.018
  21. Martin-De Las Heras S, Valenzuela A, Overall CM : The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol, 45:757-765, 2000. https://doi.org/10.1016/S0003-9969(00)00052-2
  22. Nakashima Y, Sun DH, Maloney WJ, et al. : Induction of matrix metalloproteinase expression in human macrophages by orthopaedic particulate debris in vitro. J Bone Joint Surg Br, 80:694-700, 1998. https://doi.org/10.1302/0301-620X.80B4.8374
  23. Munksgaard EC, Freund M : Enzymatic hydrolysis of (di)methacrylates and their polymers. Scand J Dent Res, 98:261-267, 1990.
  24. De Munck J, Van Meerbeek B, Yoshida Y, et al. : Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res, 82:136-140, 2003. https://doi.org/10.1177/154405910308200212
  25. Van Meerbeek B, Conn LJ Jr, Duke ES, et al. : Correlative transmission electron microscopy examination of nondemineralized and demineralized resindentin interfaces formed by two dentin adhesive systems. J Dent Res, 75:879-888, 1996. https://doi.org/10.1177/00220345960750030401
  26. Agee KL, Pashley EL, Itthagarun A, et al. : Submicron hiati in acid-etched dentin are artifacts of desiccation. Dent Mater, 19:60-68, 2003. https://doi.org/10.1016/S0109-5641(02)00007-6
  27. Suppa P, Breschi L, Ruggeri A, et al. : Nanoleakage within the hybrid layer: a correlative FEISEM/TEM investigation. J Biomed Mater Res B Appl Biomater, 73:7-14, 2005.
  28. Ito S, Hashimoto M, Wadgaonkar B, et al. : Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials, 26:6449-6459, 2005. https://doi.org/10.1016/j.biomaterials.2005.04.052
  29. Toledano M, Osorio R, De Leonardi G, et al. : Influence of self-etching primer on the resin adhesion to enamel and dentin. Am J Dent, 14:205-210, 2001.
  30. Yoshida Y, Nagakane K, Fukuda R, et al. : Comparative study on adhesive performance of functional monomers. J Dent Res, 83:454-458, 2004. https://doi.org/10.1177/154405910408300604
  31. Nunes TG, Ceballos L, Osorio R, et al. : Spatially resolved photopolymerization kinetics and oxygen inhibition in dental adhesives. Biomaterials, 26:1809-1817, 2005. https://doi.org/10.1016/j.biomaterials.2004.06.012
  32. Toledano M, Osorio R, Osorio E, et al. : Durability of resin-dentin bonds: Effects of direct/indirect exposure and storage media. Dent Mater, 2006.
  33. Armstrong SR, Vargas MA, Fang Q, et al. : Microtensile bond strength of a total-etch 3-step, total- etch 2-step, self-etch 2-step, and a self-etch 1-step dentin bonding system through 15-month water storage. J Adhes Dent, 5:47-56, 2003.
  34. Paul SJ, Welter DA, Ghazi M, et al. : Nanoleakage at the dentin adhesive interface vs microtensile bond strength. Oper Dent, 24:181-188, 1999.
  35. Okuda M, Pereira PN, Nakajima M, et al. : Longterm durability of resin dentin interface: nanoleakage vs. microtensile bond strength. Oper Dent, 27:289-296, 2002.
  36. Reis A, Grande RH, Oliveira GM, et al. : A 2-year evaluation of moisture on microtensile bond strength and nanoleakage. Dent Mater, 23:862-879, 2007. https://doi.org/10.1016/j.dental.2006.05.005