THE FINITE ELEMENTS ANALYSIS IN THE THREE DIMENSIONAL CELL CULTURE MODEL OF THE COLLAGEN MATRIX ACCORDING TO THE APPLICATION FORCE

교원섬유 기질을 이용한 3차원 세포 배양 모델에 기계적인 힘을 가하는 경우 기질을 통하여 세포에 가해지는 힘의 특성에 대한 비교 분석 연구

  • Kim, Hyeon-Jong (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Rhyu, In-Chul (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Park, Jun-Woo (Clinical Dental Research Center, Hallym University) ;
  • Kim, Seong-Gon (Clinical Dental Research Center, Hallym University)
  • 김현종 (서울대학교 치의학전문대학원 치주과) ;
  • 류인철 (서울대학교 치의학전문대학원 치주과) ;
  • 박준우 (한림대학교 임상치의학 연구소) ;
  • 김성곤 (한림대학교 임상치의학 연구소)
  • Published : 2008.04.30

Abstract

Different kinds of forces can be applied to the biological tissue. The analysis of the applied force is highly important to explain the mechanism of cellular response. In this study, the applied force to the collagen gel was analyzed by the finite elements analysis. The model received two different kinds of static force (compression and tension). The force range was 50g to 400g. In results, von Mises stress was concentrated in the peripheral region in the compression model. It was concentrated in the central area in the tension model. However, the compressive force was high in the peripheral area of the compression model and the tensional force was also high in the same area of the tension model. In conclusion, the applied force could be different to the region and it should be considered in the experiment to analyze the effects of the mechanical force on the cells.

Keywords

References

  1. Reiger MR, Adams WK, Kinzel GL: A finite element survey of eleven endosseous implants. J Prosthet Dent 1990;63:457-465 https://doi.org/10.1016/0022-3913(90)90238-8
  2. Shirazi-Adl A, Ahmed AM, Shrivastava SC: A finite element study of lumbar motion segment subjected to pure sagittal plane moments. J Biomenchanics 1986;19:331-350 https://doi.org/10.1016/0021-9290(86)90009-6
  3. 김우택, 차용두, 오세종, 박상수, 김현우, 박양호 등: 수직력하에서 임프란트 나사형태에 따른 응력의 3차원 유한요소법 분석. 대한구강악안면외과학회지 2001;27:111-117
  4. 김일규, 이성호, 류승현, 최진호, 한예숙, 손충렬 등: 구치부 부분 무치악 결손에서 유용한 세 가지 임프란트 수복법들의 응력분산에 관한 3차원 유한요소법적 비교연구. 대한구강악안면외과학회지 2004;30:175-180
  5. 김수관, 김재덕, 김종관, 김병옥: 재생된 골에 식립한 넓은 직경의 나사형 임플란트에 대한 유한요소법적 분석. 대한구강악안면외과학회지 2005;31:248-254
  6. 윤옥병, 김여갑: 하악지시상분할골절단술 시행 후 von-Miese 항복강도에 대한 유한요소법적 연구. 대한구강악안면외과학회지 2002;28:196-204
  7. 오승환, 김여갑: 충격하중과 하악골 골절발생 기전의 유한요소법적 연구. 경희 치대논문집 1995;17:439-458
  8. Crabb R, Chau EP, Evans MC, Barocas VH, Hubel A: Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. Tissue Eng 2006;12:1565-1575 https://doi.org/10.1089/ten.2006.12.1565
  9. Krishnan L, Weiss JA, Wessman MD, Hoying JB: Design and application of a test system for viscoelastic characterization of collagen gels. Tissue Eng 2004;10:241-252 https://doi.org/10.1089/107632704322791880
  10. Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D et al: Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 2005;26:311-318 https://doi.org/10.1016/j.biomaterials.2004.02.045
  11. Prendergast PJ, Huiskes R, Soballe K: Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 1997;30:539-548 https://doi.org/10.1016/S0021-9290(96)00140-6
  12. DeCroos JN, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA: Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol 2006;25:323-331 https://doi.org/10.1016/j.matbio.2006.03.005
  13. Honda K, Ohno S, Tanimoto K, Ijuin C, Tanaka N, Doi T et al: The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol 2000;79:601-609 https://doi.org/10.1078/0171-9335-00089
  14. Takahashi I, Nuckolls GH, Takahashi K, Tanaka O, Semba I, Dashner R, et al: Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci 1998;111:2067-2076
  15. Knight MM, Ghori SA, Lee DA, Bader DL: Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression. Med Eng Phys 1998;20:684-688 https://doi.org/10.1016/S1350-4533(98)00080-0
  16. Wong M, Carter DR: Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 2003; 33:1-13 https://doi.org/10.1016/S8756-3282(03)00083-8
  17. Sato K, Adachi T, Ueda D, Hojo M, Tomita Y: Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells. J Biomech 2007;40:1246-1255 https://doi.org/10.1016/j.jbiomech.2006.05.028
  18. Masuda T, Takahashi I, Anada T, Arai F, Fukuda T, Takano- Yamamoto T et al: Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells. J Biotechnol 2008;133:231-238 https://doi.org/10.1016/j.jbiotec.2007.08.007
  19. Brown TD, Bottlang M, Pedersen DR, Banes AJ: Loading paradigms - intentional and unintentional - for cell culture mechanostimulus. Am J Med Sci 1998;316:162-168 https://doi.org/10.1097/00000441-199809000-00003