Infinite Element for the Scaled Boundary Analysis of Initial Valued on-Homogeneous Elastic Half Space

초기값을 갖는 비동질무한영역의 해석을 위한 비례경계무한요소법

  • 이계희 (목포해양대학교 해양시스템공학부) ;
  • Published : 2008.04.28

Abstract

In this paper, to analyze the initial valued non-homogeneous elastic half space by the scaled boundary analysis, the infinite element approach was introduced. The free surface of the initial valued non-homogeneous elastic half space was modeled as a circumferential direction of boundary scaled boundary coordinate. The infinite element was used to represent the infinite length of the free surface. The initial value of material property(elastic modulus) was considered by the combination of the position of the scaling center and the power function of the radial direction. By use of the mapping type infinite element, the consistent elements formulation could be available. The performance and the feasibility of proposed approach are examined by two numerical examples.

본 논문에서는 초기값을 갖는 비동질 반무한 평면문제를 비례경계유한요소법으로 해석하기 위하여 무한요소를 이 해석법에 도입하였다. 초기값을 갖는 반무한 평면의 자유면은 비례경계좌표계의 원주방향의 좌표를 이용하여 모델링하였고 무한요소는 이 자유면이 나타내는 무한한 영역을 모사하기 위해 사용되었다. 반무한 평면의 물성치(탄성계수)에 대한 초기값은 비례중심의 위치와 비례경계좌표계에서의 반지름 멱함수를 이용하여 나타내었다. 사상형 무한요소를 사용하여 일관된 정식화가 가능하였고, 제안된 해석법에 대한 적용성과 성능을 두 수치예제를 통하여 보였다.

Keywords

References

  1. Bettess, P. (1992) Infinite Elements, First edition, Penshaw Press
  2. Deeks, A.J., Wolf, J.P. (2002) A virtual work derivation of the scaled boundary finite element method for elastostatic, Computational Mechanics, 28, pp.489-504 https://doi.org/10.1007/s00466-002-0314-2
  3. Doherty, J.P., Deeks, A.J. (2003), Scaled finite element analysis of a non-homogeneous elastic half space, Int. J. for numerical methods in engineering, 57, pp.955-973 https://doi.org/10.1002/nme.706
  4. Doherty, J.P., Deeks, A.J. (2005) Adaptive coupling of the finite-element and scaled boundary finite-element methods for non-linear analysis of unbounded medi, Computer & Geotechnics, 32, pp.436-444 https://doi.org/10.1016/j.compgeo.2005.07.001
  5. Ekevid, T., Lane, H., Wiberg, N.E. (2006) Adaptive solid wave propagation influences of boundary conditions in high-speed train applications, Computational Methods in applied Mechanics and Engineering, 195, pp.236-250 https://doi.org/10.1016/j.cma.2004.12.030
  6. Gu, Y.T., Liu, G.R. (2001) A coupled element free Galerkin boundary element method for stress analysis of two dimensional solids, Computational Methods in applied Mechanics and Engineering, 190, pp.4405-4419 https://doi.org/10.1016/S0045-7825(00)00324-8
  7. Hassanen, M., El-Hamalawi, A. (2007) Two-dimensional development of the dynamic coupled consolidation scaled boundary finite-element method for fully saturated soils, Soil Dynamics & Earthquake Engineering, 27, pp.153-165 https://doi.org/10.1016/j.soildyn.2006.05.003
  8. Kim, M.K., Lim, Y.M., Cho S.Y., Choa, K.H., Lee, K.W. (2002) Seismic analysis of base-isolated liquid storage tanks using the BE-FE-BE coupling technique, Soil Dynamics and Earthquake Engineering, 22, pp.1151-1158 https://doi.org/10.1016/S0267-7261(02)00142-2
  9. Kireev, O., Mertens, T., Bouillard, Ph. (2006) A coupled EFGM-CIE method for acoustic radiation, Computers and Structures, 84, pp.2092-2099 https://doi.org/10.1016/j.compstruc.2006.04.011
  10. Lee, G.H. (2007) Scaled boundary finite element methods for non-homogeneous half plane, J. of computational structural engineering institute of Korea, 20(2), pp.127-136(in Korean)
  11. Liu, D.S., Chiou, D.Y., Lin, C.H. (2003) 3D IEM formulation with an IEM/FEM coupling scheme for solving elastostatic problems, Advances in Engineering Software, 34, pp.309-320 https://doi.org/10.1016/S0965-9978(03)00036-X
  12. Liu, D.S., Chiou D.Y., Lin, C.H. (2004) A hybrid 3D thermo-elastic in nite element modeling for area-array package solder joints, Finite Elements in Analysis and Design, 40, pp.1703-1727 https://doi.org/10.1016/j.finel.2003.12.002
  13. Spyrakos, C.C., Xu, C. (2003) Seismic soil-structure interaction of massive flexible strip-foundations embedded in layered soils by hybrid BEM-FEM, Soil Dynamics and Earthquake Engineering, 23, pp.383-389 https://doi.org/10.1016/S0267-7261(03)00019-8
  14. Wolf, John P. (2003) The scaled boundary finite element method, John Wiley & Sons
  15. Yang, Y.B., Hung, H.H., Chang, D.W. (2003) Train-induced wave propagation in layered soils using finite/infinite element simulation, Soil Dynamics and Earthquake Engineering, 23, pp.263-278 https://doi.org/10.1016/S0267-7261(03)00003-4
  16. Yang, Z. (2006) Fully automatic modelling of mixedmode crack propagation using scaled boundary finite element method, Engineering Fracture Mechanics, 73, pp.1711-1731 https://doi.org/10.1016/j.engfracmech.2006.02.004