Effect of Amination on the Biological Activity of $\beta$-Glucan from Sangwhang (Phellinus linteus)

  • Bae, In-Young (Department of Food and Nutrition, Hanyang University) ;
  • Shin, Ji-Yoon (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Hyeon-Gyu (Department of Food and Nutrition, Hanyang University)
  • Published : 2008.06.30

Abstract

$\beta$-Glucans, which were isolated from sangwhang (Phellinus linteus), were subjected to reductive amination and the biological properties of the derivative were investigated. The degree of substitution of the aminated sangwhang $\beta$-glucan was calculated by elemental analysis to be 1.13. Bronchoalveolar lavage (BAL) experiments showed that the aminated derivative increased nitric oxide production. In addition, the amination enhanced in vitro cytotoxic activities against HT1080 and SNU-C2A cell lines. Thus, the aminated derivative is shown to enhance immune systems by the incorporation of amino groups into the polymer structure.

Keywords

References

  1. Manzi P, Pizzoferrat L. Beta-glucans in edible mushrooms. Food Chem. 68: 315-318 (2000) https://doi.org/10.1016/S0308-8146(99)00197-1
  2. Chung IM, Kong WS, Lee OK, Park JS, Ahmed A. Cytotoxic chemical constituents from the mushroom of Pholiota adipose. Food Sci. Biotechnol. 14: 255-258 (2005)
  3. Daba AS, Ezeronye OU. Anti-cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. Afr. J. Biotechnol. 2: 672-678 (2003) https://doi.org/10.5897/AJB2003.000-1123
  4. Cha JY, Jun BS, Yoo KS, Hahm H-R, Cho Y-S. Fermented chaga mushroom (Inonotus obliquus) effects on hypolipidemia and hepatoprotection in Otsuka Long-Evans Tokushima fatty (OLETF) rats. Food Sci. Biotechnol. 15: 122-127 (2006)
  5. Cha JY, Jun BS, Kim JW, Park S-H, Lee C-H, Cho Y-S. Hypoglycemic effects of fermented chaga mushroom (Inonotus obliquus) in the diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rat. Food Sci. Biotechnol. 15: 739-745 (2006)
  6. Shin JY, Lee S, Bae IY, Yoo SH, Lee HG. Structural and biological study of carboxylmethylated Phellinus linteus polysaccharides. J. Agr. Food Chem. 55: 3368-3372 (2007) https://doi.org/10.1021/jf063003p
  7. Song K-S, Cho S-M, Lee J, Kim H-M, Han S-B, Ko K-S, Yoo I-D. B-Lymphocyte-stimulating polysaccharide from mushroom Phellinus linteus. Chem. Pharmaceut. Bull. 43: 2105-2108 (1995) https://doi.org/10.1248/cpb.43.2105
  8. Kim HM, Han SB, Oh GT, Kim YH, Hong ND, Yoo ID. Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Int. J. Immunopharmaco. 18: 295-303 (1996) https://doi.org/10.1016/0192-0561(96)00028-8
  9. Kim G-Y, Choi G-S, Lee S-H, Park Y-M. Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-$\alpha$ from peritoneal macrophages. J. Ethnopharmacol. 95: 69-76 (2004) https://doi.org/10.1016/j.jep.2004.06.024
  10. Han SB, Lee CW, Jeon YJ, Hong ND, Yoo ID, Yang K-H, Kim HM. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacology 41: 157-164 (1999) https://doi.org/10.1016/S0162-3109(98)00063-0
  11. Chung HY, Kim TW. Isolation and characterization of a watersoluble polysaccharide from the mycelia of solid cultured Phellinus linteus. Food Sci. Biotechnol. 14: 783-787 (2005)
  12. Inagaki N, Shibata T, Itoh T, Suzuki T, Tanaka H, Nakamura T, Akiyama Y, Kawagishi H, Nagai H. Inhibition of IgE-dependent mouse triphasic cutaneous reaction by a boiling water fraction separated from mycelium of Phellinus linteus. Evid-Based Compl. Alt. 2: 369-374 (2005) https://doi.org/10.1093/ecam/neh105
  13. Kim S-H, Song Y-S, Kim S-K, Kim B-C, Lim C-J, Park E-H. Antiinflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. J. Ethnopharmacol. 93: 141-146 (2004) https://doi.org/10.1016/j.jep.2004.03.048
  14. Kim H, Han S, Lee C, Lee K, Hong D. Compositions containing polysaccharides from Phellinus linteus and methods for treating diabetes mellitus using same. U.S. patent 6,809,084 (2004)
  15. Shibata Y, Kashiwagi B, Arai S, Fukabori Y, Suzuki K. Administration of extract of mushroom Phellinus linteus induces prostate enlargement with increase in stromal component in experimentally developed rat model of benign prostatic hyperplasia. Urology 66: 455-460 (2005) https://doi.org/10.1016/j.urology.2005.03.036
  16. Kulicke WM, Lettau AI, Thielking K. Correlation between immunological activity, molar mass, and molecular structure of different (1$\rightarrow$3)-$\beta$-glucans. Carbohyd. Res. 297: 135-143 (1997) https://doi.org/10.1016/S0008-6215(96)00273-X
  17. Lee JK. Structural modification of polysaccharide for the improvement of functionality. PhD thesis, KAIST, Daejeon, Korea (1999)
  18. Shin MS, Lee S, Lee KY, Lee HG. Structural and biological characterization of aminated-derivatized oat $\beta$-glucan. J. Agr. Food Chem. 53: 5554-5558 (2005) https://doi.org/10.1021/jf050273j
  19. Yalpani M. Processes for the preparation branched, water soluble cellulose products. U.S. patent 4,531,000 (1985)
  20. Tomas G, Ramwell PW. Vasodilatory properties of mono-L-arginine containing compounds. Biochem. Bioph. Res. Co. 154: 332-338 (1988) https://doi.org/10.1016/0006-291X(88)90689-4
  21. Browder IW. Role of immunomodulation in surgical infections. Surv. Immunol. Res. 2: 299-301 (1983)
  22. Mansell PWA, Ichinose H, Reed RH, Krementz ET, Mcnames R, Di Luzio R. Macrophage-mediated destruction of human malignant cells in vitro. J. Natl. Cancer. Inst. 54: 571-580 (1975)
  23. Bohn JA, Bemiller JN. (1-3)-$\beta$-D-Glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohyd. Polym. 28: 3-14 (1995) https://doi.org/10.1016/0144-8617(95)00076-3
  24. Jung K, Ha Y, Ha SK,Han DU, Kim DW, Moon WK. Antiviral effect of Saccharomyces cerevisiae $\beta$-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J. Vet. Med. B 51: 72-76 (2004) https://doi.org/10.1111/j.1439-0450.2004.00732.x
  25. Ljungman AG, Leanderson P, Tagesson C. (1-3)-$\beta$-D-Glucan stimulates nitric oxide generation and cytokine mRNA expression in macrophages. Environ. Toxicol. Phar. 5: 273-281 (1998) https://doi.org/10.1016/S1382-6689(98)00011-8
  26. Huffman LJ, Prugh DJ, Millecchia L, Schuller KC, Cantrell S, Porter DW. Nitric oxide production by rat bronchoalveolar macrophages or polymorphonuclear leukocytes following intratracheal instillation of lipopolysaccharide or silica. J. Bioscience 28: 29-37 (2003) https://doi.org/10.1007/BF02970129
  27. Cross GG, Jennings HJ, Whitfield DM, Penney CL, Zacharie B, Gangnon L. Immunostimulant oxidized $\beta$-glucan conjugates. Int. Immunopharmacol. 1: 539-550 (2001) https://doi.org/10.1016/S1567-5769(00)00021-7
  28. Wang Y, Zhang L, Li Y, Hou X, Zeng F. Correlation of structure to antitumor activities of five derivatives of a $\beta$-glucan from Poria cocos sclerotium. Carbohyd. Res. 339: 2567-2574 (2004) https://doi.org/10.1016/j.carres.2004.08.003
  29. Zhang M, Cheung PCK, Zhang L, Chiu C-M, Ooi VEC. Carboxymethylated $\beta$-glucans from mushroom sclerotium of Pleurotus tuber-regium as novel water-soluble anti-tumor agent. Carbohyd. Polym. 57: 319-325 (2004) https://doi.org/10.1016/j.carbpol.2004.05.008
  30. Zhang M, Zhang L, Cheung PCK. Molecular mass and chain conformation of carboxymethylated derivatives of $\beta$-glucan from sclerotia of Pleurotus tuber-regium. Biopolymers 68: 150-159 (2003) https://doi.org/10.1002/bip.10277