Inhibition of Lipid Accumulation in 3T3-L1 Adipocytes by Extract of Chokong, Rhynchosia nolubilis Seeds Pickled in Vinegar

  • Shin, Jee-Young (Material Processing Technology Division, Korea Food Research Institute) ;
  • Park, La-Young (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Oh, Young-Sook (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Shin-Ho (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Kim, Seok-Joong (Department of Food and Nutrition, Dongduk Women's University)
  • Published : 2008.04.30

Abstract

The anti-obesity effect of chokong, Rhynchosia nolubilis seeds pickled in vinegars for 2 weeks at $4^{\circ}C$, was investigated. During the differentiation of 3T3-L1 adipocytes, the addition of ethanolic extracts of chokongs lowered the cellular triglyceride content by 8.1-9.0%, and glucose content by 12.2-27.6%, depending on the kinds of vinegar used. The activity of glycerol-3-phosphate dehydrogenase also decreased up to 56.0-59.3% by supplying those extracts. In addition, vinegars were superior to acetic acid, citric acid, and hydrochloric acid solutions, and distilled water in anti-obesity of the pickled seeds.

Keywords

References

  1. Kopelman PG. Obesity as a medical problem. Nature 404: 635-643 (2000) https://doi.org/10.1038/35007508
  2. Popkin B, Doak CM. The obesity epidemic is a worldwide phenomenon. Nutr. Rev. 56: 106-114 (1998) https://doi.org/10.1111/j.1753-4887.1998.tb01722.x
  3. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes. Res. 2: 239-254 (2001) https://doi.org/10.1046/j.1467-789X.2001.00042.x
  4. Sul HS, Smas CM, Wang D, Chen L. Regulation of fat synthesis and adipose differentiation. Prog. Nucleic Acid Re. 60: 317-345 (1998) https://doi.org/10.1016/S0079-6603(08)60896-X
  5. Kawada T. Fat cell formation and obesity-related diseases. Nutraceut. Food 8: 105-112 (2003) https://doi.org/10.3746/jfn.2003.8.1.105
  6. Bray GA. Medical consequence of obesity. J. Clin. Endocr. Metab. 89: 2583-2589 (2004) https://doi.org/10.1210/jc.2004-0535
  7. Han DS, Kwon EK, Kim DW, Kim YE, Lee CH, Kim IH. Biocellulose reduces body weight gain of rats fed high-fat diet. Food Sci. Biotechnol. 15: 70-76 (2006)
  8. Shin SJ, Hong ST. Acanthopanax and platycodi independently prevents the onset of high fat diet induced hyperglyceridemia and obesity in C57BL/6 mice. Food Sci. Biotechnol. 14: 841-846 (2005)
  9. Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kondo K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agr. Food Chem. 53: 4578-4582 (2005) https://doi.org/10.1021/jf048062m
  10. Sa JH, Shin IC, Jeong KJ, Shim TH, Oh HS, Kim YJ, Cheung EH, Kim GG, Choi DS. Antioxidative activity and chemical characteristics from different organs of small black soybean (yakkong) grown in the area of Jungsun. Korean J. Food Sci. Technol. 35: 309-315 (2003)
  11. Kim MJ, Kim KS. Functional and chemical composition of hwanggumkong, yakong, and huktae. Korean J. Food Cook. Sci. 21: 844-850 (2005)
  12. Kang SA, Jang KH, Cho Y, Hong K, Suh JH, Choue R. Effects of artificial stomach fluid and digestive enzymes on the aglycone isoflavone contents of soybean and black bean (Rhynchosia nolubilis: yakkong). Korean J. Nutr. 36: 32-39 (2003)
  13. Rho SJ, Park S, Ahn CW, Shin JK, Lee HG. Dietetic and hypocholesterolaemic action of black soy peptide in dietary obese rats. J. Sci. Food Agr. 87: 908-913 (2007) https://doi.org/10.1002/jsfa.2808
  14. Shin MK, Han SH. Effects of methanol extracts from Rhynchosia nolubilis on serum lipid concentration in rats fed high fat and high cholesterol diet. Korean J. Diet. Culture 17: 64-69 (2002)
  15. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawada T, Lim BO, Park DK. Red yeast rice extracts suppress adipogenesis by downregulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci. 75: 3195-3203 (2004) https://doi.org/10.1016/j.lfs.2004.06.012
  16. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil Red O. Histochemistry 97: 493-497 (1992) https://doi.org/10.1007/BF00316069
  17. Jesen B, Farach-Carson MC, Kenaley E, Akanbi KA. High extracellular calcium attenuates adipogenesis in 3T3-L1 preadipocytes. Exp. Cell. Res. 301: 280-292 (2004) https://doi.org/10.1016/j.yexcr.2004.08.030
  18. Wise LS, Green H. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. J. Biol. Chem. 254: 273-275 (1979)
  19. Oh YS, Choi CB. Effects of zinc on lipogenesis of bovine intramuscular adipocytes. Asian-Aust. J. Anim. Sci. 17: 1378-1382 (2004) https://doi.org/10.5713/ajas.2004.1378
  20. Moustaid NM, Jones BH, Taylor JW. Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. J. Nutr. 126: 865-870 (1996) https://doi.org/10.1093/jn/126.4.865
  21. Green H, Kehinde O. Sublines of mouse 3T3-L1 cells that accumulate lipid. Cell 1: 113-116 (1974) https://doi.org/10.1016/0092-8674(74)90126-3
  22. Ohkura K, Mori M, Terada H, Makino S. Stimulation of insulin action and stabilization of cell membrane in 3T3-L1 cells by glycinin acidic subunit A1a. Biosci. Biotech. Bioch. 58: 1485-1488 (1995)
  23. Russell TR. Growth and cytodifferentiation of 3T3-L1 preadipocytes into adipocytes. Method Enzymol. 72: 720-723 (1981) https://doi.org/10.1016/S0076-6879(81)72062-7
  24. Velasquez MT, Bhathena SJ. Role of dietary soy protein in obesity. Int. J. Med. Sci. 4: 72-82 (2007)
  25. Lee CH, Oh SH, Yang EJ, Kim YS. Effects of raw, cooked, and germinated small black soybean powders on dietary fiber content and gastrointestinal functions. Food Sci. Biotechnol. 15: 635-638 (2006)
  26. Liu J, Chang SK, Wiesenborn D. Antioxidant properties of soybean isoflavone extract and tofu in vitro and in vivo. J. Agr. Food Chem. 53: 2333-2340 (2005) https://doi.org/10.1021/jf048552e
  27. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosinespecific protein kinases. J. Biol. Chem. 274: 32159-32166 (1987) https://doi.org/10.1074/jbc.274.45.32159
  28. Harmon AW, Patel YM, Harp JB. Genistein inhibit CCAAT/ enhancer-binding protein ${\beta}$ (C/EBP ${\beta}$) activity and 3T3-L1 adipogenesis by increasing C/EBP homologous protein expression. Biochem. J. 367: 203-208 (2002) https://doi.org/10.1042/BJ20020300
  29. Naaz A, Yellayi S, Zakroczymski MA, Bunick D, Doerge DR, Lubahn DB, Helferich WG, Cooke PS. The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 144: 3315- 3320 (2003) https://doi.org/10.1210/en.2003-0076
  30. Bazuine M, van den Broek PJ, Maassen JA. Genistein directly inhibits GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Biochem. Bioph. Res. Co. 326: 511-514 (2005) https://doi.org/10.1016/j.bbrc.2004.11.055
  31. Szkudelska K, Nogowski L, Szkudelski T. Genistein affects lipogenesis and lipolysis in isolated rat adipocytes. J. Steroid Biochem. 75: 265-271 (2000) https://doi.org/10.1016/S0960-0760(00)00172-2
  32. Kim SJ, Shin JY, Cho MH, Oh YS, Park NY, Lee SH. Antioxidant activity and isoflavone profile of Rhynchosia nolubilis seeds pickled in vinegar (chokong). Food Sci. Biotechnol. 16: 444-450 (2007)
  33. Iwashita K, Yamaki K, Tsushida T. Effect of flavonoids on the differentiation of 3T3-L1 adipocytes. Food Sci. Technol. Res. 7: 154-160 (2001) https://doi.org/10.3136/fstr.7.154
  34. Hsu CL, Huang SL, Yen GC. Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity. J. Agr. Food Chem. 54: 4191-4197 (2006) https://doi.org/10.1021/jf0609882
  35. Kawakami Y, Tsurugasaki W, Nakamura S, Osada K. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J. Nutr. Biochem. 16: 205-212 (2005) https://doi.org/10.1016/j.jnutbio.2004.11.005
  36. Matsuura M, Obata A. ${\beta}-Glucosidases$ from soybeans hydrolyze daidzein and genistin. J. Food Sci. 58: 144-147 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb03231.x
  37. Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M, Ye J. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol. Endocrinol. 18: 2024-2034 (2004) https://doi.org/10.1210/me.2003-0383