References
-
Schmidt DD, Frommer W, Junge B, Muller L, Wingender W, Truscheit E, Schafer D.
${\alpha}-Glucosidase$ inhibitors. New complex oligosaccharides of microbial origin. Naturwissenschaften 64: 535-536 (1977) https://doi.org/10.1007/BF00483561 - Aleshin AE, Firsov LM, Honzatko RB. Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. J. Biol. Chem. 269: 15631-15639 (1994)
-
Brzozowski AM, Davies GJ. Structure of the Aspergillus oryzae
${\alpha}-amylase$ complexed with the inhibitor acarbose at 2.0A resolution. Biochemistry 36: 10837-10845 (1997) https://doi.org/10.1021/bi970539i - Strokopytov B, Penninga D, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW. X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry 34: 2234-2240 (1995) https://doi.org/10.1021/bi00007a018
- Schoffling K, Hillebrand I, Berchtold P. Treatment of diabetes mellitus with the glycoside hydrolase inhibitor acarbose (BAY-g-5421). Front. Horm. Res. 7: 248-257 (1980)
-
Bischoff H. The mechanism of
${\alpha}-glucosidase$ inhibition in the management of diabetes. Clin. Invest. Med. 18: 303-311 (1995) - Park KH, Kim MJ, Lee HS, Han NS, Kim D, Robyt JF. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohyd. Res. 313: 235-246 (1998) https://doi.org/10.1016/S0008-6215(98)00276-6
-
Kim M-J, Lee S-B, Lee H-S, Baek J-S, Kim D, Moon T-W, Robyt JF, Park K-H. Comparative study of the inhibition of
${\alpha}-glucosidase$ ,${\alpha}-amylase$ , and cyclodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine-glucose. Arch. Biochem. Biophys. 371: 277-283 (1999) https://doi.org/10.1006/abbi.1999.1423 -
Lee S-B, Park K-H, Robyt JF. Inhibition of
${\alpha} -glycosidase$ by acarbose analogues containing cellobiose and lactose structures. Carbohyd. Res. 331: 13-18 (2001) https://doi.org/10.1016/S0008-6215(01)00016-7 - Baek J-S, Kim J-M, Cha H, Lee H-S, Li D, Kim J-W, Moon T-W, Park K-H. Enhanced transglycosylation activity of Thermus maltogenic amylase in acetone solution. Food Sci. Biotechnol. 12: 639-643 (2003)
-
Li C, Begum A, Numao S, Park KH, Withers SG, Brayer GD. Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic
${\alpha} -amylase$ in complex with analogues and their elongated counterparts. Biochemistry 44: 3347-3357 (2005) https://doi.org/10.1021/bi048334e -
Lee M-H, Kim Y-W, Kim T-J, Park C-S, Kim J-W, Moon T-W, Park K-H. A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and
${\alpha -glucosidase$ , that liberates glucose from the reducing end of the substrates. Biochem. Bioph. Res. Co. 295: 818-825 (2002) https://doi.org/10.1016/S0006-291X(02)00748-9 - Chung MJ, Lee Y-S, Kim B-C, Lee S-B, Moon T-W, Lee S-J, Park K-H. The hypoglycemic effects of acarviosine-glucose modulate hepatic and intestinal glucose transporters in vivo. Food Sci. Biotechnol. 15: 851-855 (2006)
- French D, Levin ML, Norberg E, Nordin P, Pazur JH, Wild GM. Studies on the schardinger dextrins. VII. Co-substrate specificity in coupling reactions of Macerans amylase. J. Am. Chem. Soc. 76: 2387-2390 (1954) https://doi.org/10.1021/ja01638a027
- Duggleby RG. Regression analysis of nonlinear arrhenius plots: An empirical model and a computer program. Comput. Biol. Med. 14: 447-455 (1984) https://doi.org/10.1016/0010-4825(84)90045-3