Antioxidant Activity of Main and Fine Roots of Ginseng (Panax Ginseng C.A. Meyer) Extracted with Various Solvents

  • Kim, Ji-Sang (Department of Food and Nutrition, Kyung Hee University) ;
  • Yoon, Ki-Sun (Department of Food and Nutrition, Kyung Hee University) ;
  • Lee, Young-Soon (Department of Food and Nutrition, Kyung Hee University)
  • Published : 2008.02.29

Abstract

The objective of this study was to investigate antioxidant activities of freeze-dried, main root, and fine root of ginseng (Panax ginseng CA. Meyer), which were extracted with various solvents including ethanol, methanol, and water. Ethanol extracts in both parts showed the most powerful scavenging activities against DPPH radicals. Especially, ethanol extract of fine root had higher reducing power and antioxidant capacity than that of main root. The highest antioxidant activity in linoleic acid emulsion system was also observed in fine root extracted with ethanol, followed by methanol and water. Both ferrous ion chelating activity and ferric reducing antioxidant power (FRAP) of extracts were increased with the increase of extracts concentration. These results suggest that ethanol extract of fine root of ginseng has the most effective antioxidant capacity compared to the methanol and water extracts tested in the present study. Thus it can be applied for the effective extraction of functional material from ginseng for the usage of pharmaceutical and/or food industries.

Keywords

References

  1. Evans WC. Trease and Evans Pharmacology. 13th ed. Oxford: English Language Book Society, Bailliere Tindall, London. Britain, p. 490 (1989)
  2. Park MJ, Kim MK, In JG, Yang DC. Molecular identification of Korean ginseng by amplification refractory mutation system-PCR. Food Res. Int. 39: 568-574 (2006) https://doi.org/10.1016/j.foodres.2005.11.004
  3. Wen J, Zimmer EA. Phylogeny and biogeography of Panax L. (the Ginseng Genus, Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA. Mol. Phylogenet. Evol. 6: 167-177 (1996) https://doi.org/10.1006/mpev.1996.0069
  4. Jung CH, Seog HM, Choi IW, Cho HY. Antioxidant activities of cultivated and wild Korean ginseng leaves. J. Food Chem. 92: 535- 540 (2005) https://doi.org/10.1016/j.foodchem.2004.08.021
  5. Park JD. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng C.A. Meyer). Korean J. Ginseng Sci. 20: 389-415 (1996)
  6. Lee FC. Facts about Ginseng, the Elixir of Life. Hollyn International Corp., Elizabeth, NJ, USA (1993)
  7. Gillis CN. Panax ginseng pharmacology: A nitric oxide link? Biochem. Pharmcol. 54: 1-8 (1997) https://doi.org/10.1016/S0006-2952(97)00193-7
  8. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685- 1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  9. Park TH, Hong JT, Hong SY. The antioxidative action of various solvent extracts of Panax ginseng roots. Food Sci. Biotechnol. 14: 130-135 (1982)
  10. Choi KJ, Kim MW, Hong SK. Effect of solvents on the yield, brown color intensity, UV absorbance, reducing, and antioxidant activities of extracts from white and red ginseng. J. Korean Agric. Chem. Soc. 26: 8-18 (1983)
  11. Zhang D, Yasuda T, Yu Y, Zheng P, Kawabata T, Ma Y, Okada S. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radical Bio. Med. 20: 145-150 (1996) https://doi.org/10.1016/0891-5849(95)02020-9
  12. Kitts DD, Wijewickreme AN, Hu C. Antioxidant properties of a North American ginseng extract. Mol. Cell. Biochem. 203: 1-10 (2000) https://doi.org/10.1023/A:1007078414639
  13. Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kwon H, Surh YJ. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 150: 41-48 (2000) https://doi.org/10.1016/S0304-3835(99)00369-9
  14. AOAC. Official Methods of Analysis of AOAC Intl. 15th ed. Method 930.15. Association of Official Analytical of Official Analytical Communities, Washington DC, USA (1990)
  15. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 299: 152-178 (1999) https://doi.org/10.1016/S0076-6879(99)99017-1
  16. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol. 28: 25-30 (1995) https://doi.org/10.1016/S0023-6438(95)80008-5
  17. Dinis TCP, Madeira VMC, Almerida LM. Action of phenolic derivatives (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavenges. Arch. Biochem. Biophys. 315: 161-169 (1994) https://doi.org/10.1006/abbi.1994.1485
  18. Oyaizu M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  19. Hayase F, Kato H. Antioxidative components of sweet potatoes. J. Nutr. Sci. Vitaminol. 30: 37-46 (1984) https://doi.org/10.3177/jnsv.30.37
  20. AOAC. Official Methods of Analysis of AOAC Intl. 4th ed. Method 28.025-28.026. Association of Official Analytical of Official Analytical Communities, Washington DC, USA (1984)
  21. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  22. Duan XW, Jiang YM, Su XG, Zhang ZQ, Shi J. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem. 101: 1365-1371 (2006) https://doi.org/10.1016/j.foodchem.2005.06.057
  23. Lee JC, Lim KT, Jang YS. Identification of Rhus Verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim. Biophys. Acta 1570: 181-191 (2002) https://doi.org/10.1016/S0304-4165(02)00196-4
  24. Yen GC, Hsieh CL. Antioxidant activity of extracts from du-zhong (Eucommia ulmoides) toward various lipid peroxidation models in vitro. J. Agr. Food Chem. 46: 3952-3957 (1998) https://doi.org/10.1021/jf9800458
  25. Shon MY, Kim TH, Sung NJ. Antioxidants and free radical scavenging activity of Phellinus baumii extracts. Food Chem. 82: 593-597 (2003) https://doi.org/10.1016/S0308-8146(03)00015-3
  26. Wee JJ, Park, JD, Kim MW, Lee HJ. Isolation of phenolic antioxidant components isolated from Panax ginseng. J. Korean Agric. Chem. Soc. 32: 44-49 (1989)
  27. Wee JJ, Park, JD, Kim MW, Lee HJ. Identification of phenolic antioxidant components isolated from Panax ginseng. J. Korean Agric. Chem. Soc. 32: 50-56 (1989)
  28. Wee JJ, Hoe JN, Kim MJ. Analysis of phenolic components in Korean red ginseng by GC/MS. J. Ginseng Res. 20: 284-290 (1996)
  29. Kim MW, Wee JJ, Park JD. Isolation and identification of free phenolic acids in Korean ginseng. J. Korean Agric. Chem. Soc. 19: 392-397 (1987)
  30. Krygier K, Sosulski F, Hogge L. Free, esterified, and insolublebound phenolic acids. 1. Extraction and purification procedure. J. Agr. Food Chem. 30: 330-334 (1982) https://doi.org/10.1021/jf00110a028
  31. Krygier K, Sosulski F, Hogge L. Free, esterified, and insolublebound phenolic acids. 2. Composition of phenolic acids in rapeseed flour and hulls. J. Agr. Food Chem. 30: 334-336 (1982) https://doi.org/10.1021/jf00110a029
  32. Krygier K, Sosulski F, Hogge L. Free, esterified, and insolublebound phenolic acids. 3. Composition of phenolic acids in cereal and potation flours. J. Agr. Food Chem. 30: 337-340 (1982) https://doi.org/10.1021/jf00110a030
  33. Shih PW, Lai PL, Jen HWK. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99: 775-783 (2006) https://doi.org/10.1016/j.foodchem.2005.07.058
  34. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  35. Ramarathnam N, Ochi H, Takeuchi M. Antioxidant defense system in vegetable extracts. pp. 76-87. In: Natural Antioxidants: Chemistry, Health Effects, and Applications. F. Shahidi (ed). AOCS Press, Champaign, IL, USA (1997)
  36. Robards K, Prenzeler PD, Tucker G, Swatsitang P, Glover W. Phenolic compounds and their role in oxidative process in fruits. Food Chem. 66: 401-436 (1999) https://doi.org/10.1016/S0308-8146(99)00093-X
  37. Pyo YH, Lee TC, Logendra L, Rosen RT. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem. 85: 19-26 (2004) https://doi.org/10.1016/S0308-8146(03)00294-2
  38. Frankel EN. Recent advances in lipid oxidation. J. Agr. Food Chem. 54: 495-511 (1991) https://doi.org/10.1002/jsfa.2740540402
  39. Gordon MH. The mechanism of the antioxidant action in vitro. pp. 1-18. In: Food Antioxidants. Hudson, BJF (ed). Elsevier, London, UK (1990)
  40. Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: An overview. Method Enzymol. 186: 1-85 (1990) https://doi.org/10.1016/0076-6879(90)86093-B
  41. Chandrika M, Liyana P, Fereidoon S. Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem. 101: 1151-1157 (2007) https://doi.org/10.1016/j.foodchem.2006.03.016
  42. Zhao GR, Xiang ZJ, Ye TX, Yuan YJ, Guo ZX. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem. 99: 767-774 (2006) https://doi.org/10.1016/j.foodchem.2005.09.002
  43. Yamaguchi R, Tatsumi MA, Kato K, Yoshimitsu U. Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agric. Biol. Chem. 52: 849-850 (1988) https://doi.org/10.1271/bbb1961.52.849
  44. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agr. Food Chem. 50: 2454-2458 (2002) https://doi.org/10.1021/jf011369q
  45. Duh PD. Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free radical and active oxygen. J. Am. Oil Chem. Soc. 75: 455-461 (1998) https://doi.org/10.1007/s11746-998-0248-8
  46. Tanaka M, Kuie CW, Nagashima Y, Taguchi T. Applications of antioxidative Maillard reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi 54: 1409-1414 (1988) https://doi.org/10.2331/suisan.54.1409
  47. Shon MY, Kim TH, Sung NJ. Antioxidants and free radical scavenging activity of Phellinus baumii extracts. Food Chem. 82: 593-597 (2003) https://doi.org/10.1016/S0308-8146(03)00015-3
  48. Xing R, Liu S, Guo Z, Yu H, Li C, Ji X, Feng J, Li P. The antioxidant activity of glucosamine hydrochloride in vitro. Bioorg. Med. Chem. 14: 1706-1709 (2006) https://doi.org/10.1016/j.bmc.2005.10.018
  49. Guntensperger B, Hämmerli-Meier DE, Escher FE. Rosemary extract and precooking effects on lipid oxidation in heat sterilized meat. J. Food Sci. 63: 955-957 (1998) https://doi.org/10.1111/j.1365-2621.1998.tb15831.x
  50. Yoshikawa T, Naito Y, Kondo M. Food and diseases. pp. 11-19. In: Free Radicals and Diseases. Hiramatsu M, Yoshikawa T, Inoue M. (eds). Plenum Press, New York, NY, USA (1997)
  51. Van den Berg R, Haenen GRMM, Van den Berg H. Applicability of an improved Trolox equivalent antioxidant capacity assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66: 511-517 (1999) https://doi.org/10.1016/S0308-8146(99)00089-8
  52. Evelson P, Travacio M, Repetto M. Evaluation of total reactive antioxidant potential of tissue homogenates and their cytosols. Arch. Biochem. Biophys. 388: 261-266 (2001) https://doi.org/10.1006/abbi.2001.2292
  53. Cao G, Prior RL. Measurement of oxygen radical absorbance capacity in biological samples. Method Enzymol. 299: 50-62 (1999) https://doi.org/10.1016/S0076-6879(99)99008-0
  54. Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agr. Food Chem. 49: 4619- 4626 (2001) https://doi.org/10.1021/jf010586o
  55. Gao X, Bjork L, Trajkovski V, Uggla M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agr. 80: 2021-2027 (2000) https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  56. Halvorsen BL, Hotle K, Myhrstad MCW, Barikmo I, Hvattum E, Fagertun Remberg S, Wold A-B, Haffner K, Baugerod H, Andersen LF, Moskaug JO, Jacobs DR, Blomhoff R. A systematic screening of total antioxidants in dietary plants. J. Nutr. 132: 461-471 (2002)
  57. Schlesier K, Harwat M, Bohm V, Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radical Res. 36: 177-178 (2002) https://doi.org/10.1080/10715760290006411