DOI QR코드

DOI QR Code

Measurement of Piezoelectric Effect and Reduction of Strain in InGaN/GaN Quantum Well with Superlattice Buffer

초격자 Buffer를 사용한 InGaN/GaN 양자우물에서 Piezoelectric 효과의 측정과 Strain 감소에 대한 연구

  • 공경식 (한국외국어대학교 전자물리학과) ;
  • 안주인 (한국외국어대학교 전자물리학과) ;
  • 이석주 (한국외국어대학교 전자물리학과)
  • Published : 2008.06.01

Abstract

In order to reduce the piezoelectric field originated from the well layer which resides in InGaN/GaN light emitting diode, InGaN/GaN superlattice buffer layers were grown at the bottom and the top of the active layer. Measuring the photoluminescence spectra with different reverse bias voltages clearly revealed the condition of the flat band under which the transition energy is maximized and the linewidth is minimized. Accordingly, the piezoelectric field of $In_{0.15}Ga_{0.85}N$ in our sample was estimated as -1.08 MV/cm. It is less than half the value reported in the previous studies, and it is evidenced that the strain has reduced due to the superlattice buffer layers.

Keywords

References

  1. S. Nakamura and S. F. Chichibu (eds.), 'Introduction to nitride semiconductor blue lasers and light emitting diodes', Taylor & Francis, London and New York, p. 317, 2000
  2. O.-H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, 'Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy', Appl. Phys. Lett., Vol. 71, No. 18, p. 2638, 1997 https://doi.org/10.1063/1.120164
  3. H. Miyake, R. Takeuchi, K. Hiramatsu, H. Naoi, Y. Iyechika, T. Maeda, T. Riemann, F. Bertram, and J. Christen, 'High quality GaN grown by facet-controlled ELO (FACELO) technique', Phys. Stat. Solidi A, Vol. 194, No. 2, p. 545, 2002 https://doi.org/10.1002/1521-396X(200212)194:2<545::AID-PSSA545>3.0.CO;2-B
  4. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, 'S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells', Appl. Phys. Lett., Vol. 73, No. 10, p. 1370, 1998 https://doi.org/10.1063/1.122164
  5. X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, 'Temperature- dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes', Appl. Phys. Lett., Vol. 82, No. 21, p. 3614, 2003 https://doi.org/10.1063/1.1578539
  6. J. H. Na, R. A. Taylor, K. H. Lee, T. Wang, A. Tahraoui, P. Parbrook, A. M. Fox, S. N. Yi, Y. S. Park, J. W. Choi, and J. S. Lee, 'Dependence of carrier localization in InGaN/GaN multiple-quantum wells on well thickness', Appl. Phys. Lett., Vol. 89, p. 253120, 2006 https://doi.org/10.1063/1.2423232
  7. C. J. Humphreys, 'Does In form In-rich clusters in InGaN quantum wells?', Philosophical Magazine, Vol. 87, No. 13, p. 1971, 2007 https://doi.org/10.1080/14786430701342172
  8. M. S. Shur and M. A. Khan, 'GaN/AlGaN heterostructure devices: photodetectors and field-effect transistors', Mat. Res. Soc. Bull., Vol. 22, No. 2, p. 44, 1997
  9. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, 'Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect', Appl. Phys. Lett., Vol. 73, No. 12, p. 1691, 1998 https://doi.org/10.1063/1.122247
  10. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, 'Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures', Appl. Phys. Lett., Vol. 73, No. 14, p. 2006, 1998 https://doi.org/10.1063/1.122350
  11. Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, 'Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells', Appl. Phys. Lett., Vol. 79, No. 8, p. 1130, 2001 https://doi.org/10.1063/1.1396315
  12. C. Y. Lai, T. M. Hsu, W.-H. Chang, K.-U. Tseng, C.-M. Lee, C.-C. Chuo, and J.-I. Chyi, 'Direct measurement of piezoelectric field in $In_{0.23}Ga_{0.77}N/GaN$ multiple quantum wells by electrotransmission spectroscopy', J. Appl. Phys., Vol. 91, No. 1, p. 531, 2002 https://doi.org/10.1063/1.1426237
  13. P. T. Barletta, E. A. Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, 'Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures', Appl. Phys. Lett., Vol. 90, p. 151109, 2007 https://doi.org/10.1063/1.2721133
  14. I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, 'Determination of the piezoelectric field in InGaN quantum wells', Appl. Phys. Lett., Vol. 86, p. 131108, 2005 https://doi.org/10.1063/1.1896446
  15. 김경찬, 김태근, '$In_xGa_{1-x}N/GaN$ 양자우물 구조의 수치 해석을 이용한 압전장 평가', 전기전자재료학회논문지, 17권, 1호, p. 89, 2004
  16. L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, 'Comparison of optical transitions in InGaN quantum well structures and microdisks', J. Appl. Phys., Vol. 89, No. 9, p. 4951, 2001 https://doi.org/10.1063/1.1355280
  17. H. Masui, M. C. Schmidt, A. Chakraborty, S. Nakamura, and S. P. DenBaars, 'Electro- luminescent and electrical characteristics of polar and nonpolar InGaN/GaN light- emitting diodes at low temperature', Jpn. J. Appl. Phys., Vol. 45, No. 10A, p. 7661, 2006 https://doi.org/10.1143/JJAP.45.7661
  18. M. Kubota, K. Okamoto, T. Tanaka, and H. Ohta, 'Temperature dependence of polarized photoluminescence from nonpolar m-plane InGaN multiple quantum wells for blue laser diodes', Appl. Phys. Lett., Vol. 92, p. 011920, 2008 https://doi.org/10.1063/1.2824886